ADVERTISEMENT

Towards Self-Powered Wearables: An Improved Approach For Wrist-Worn Energy Harvesting

Nowadays, the wearable tech scene is booming all over the world. These have been very well received in the sports, healthcare, and entertainment industries. People are interested in such a product (wearable) that is always on, requires no attention, and never needs to be charged; simply wear and forget. The human body is an abundant source of energy.

Potential sources include body heat, motion, exhalation and even blood pressure. Harnessed properly, this energy can be used to directly power wearables: everything from small sensors to power-hungry communication devices and displays. The possibilities are endless.

ADVERTISEMENT

Harvesting energy from basic human activities (e.g., walking, running, jogging, performing office task, etc.) is a hot topic in recent days. Vibration energy harvesters convert kinetic energy generated by human-body motion into electrical energy by employing compatible electromechanical transduction systems. Generally, an inertial mechanism is used for electromechanical coupling. A proof-mass, mounted in a reference frame attached to the vibrating body, couples the kinetic energy (while the body is in motion) to a transducer (piezoelectric, electromagnetic, or other) that generates electrical power.

Among different locations on human-body, the most common and easiest one is the wrist since most wearable gadgets available in the market are wrist-worn (e.g., smartwatches, activity trackers, fitness gadgets etc.). Investigation says human-body-induced-motion exhibits low-frequency, large-amplitude, and random characteristics. Capturing energy from such low-frequency, large-amplitude random motion of the human-body requires clever design approaches.

Depending on the source of vibration, some harvesters have been developed as resonant, others as wideband which utilize linear or nonlinear inertial-mass motion. However, the power output of such linear energy harvesters is limited by the internal travel range of its inertial-mass motion, especially for low-frequency excitations (e.g., human-body motion). To overcome this limitation of linear motion based harvesters, devices with rotational inertial mass have been adopted by researchers that utilize an eccentric rotor structure to couple the kinetic energy into the transducer element. However, the proof-mass rotational amplitude of such structures is quite small for human-arm motion during daily activities; a larger rotational amplitude results in higher power output. Effective design of the rotational unit enhances the rotational amplitude, which increases the output power.

Recently, researchers at the University of Utah, USA reports a new approach to wrist-worn energy harvesting by utilizing an improved eccentric rotational structure which is capable of generating over six times higher power than its conventional counterpart. Published in Applied Energy, it uses a sprung eccentric rotor structure for mechanical coupling and an electromagnetic transducer incorporated within the rotational structure for energy conversion.

ADVERTISEMENT

The electromechanical behavior of the system was investigated via numerical and finite element analysis, and the performance of a fabricated prototype of ∼3.5 cm3 functional volume (the volume without crappy housing) was verified by a series of pseudo-walking signal (single frequency sinusoidal signal derived from motion of a driven pendulum that approximates the swing of a human-arm during walking). The authors say that verifying its performance on human subjects is ambiguous since the same result may not be reproduced (on the same subject) due to variation in the motion from one run to another. Therefore, the pseudo-walking test was initially done for a robust validation of the theoretical investigation. And they are looking forward to testing on humans to prove its potential in the real world.

Theoretical simulations show that under certain pseudo-walking input excitations, the dynamic response of the eccentric rotor is greatly influenced by the stiffness of the torsional spring which, in turn, affects the power and voltage generation of the system. It was further justified by benchtop tests. The performance of the sprung device (with optimal or near-optimal spring stiffness) is very promising compared to its unsprung counterpart. The power output of the sprung device, with optimum spring stiffness, 1 Hz frequency, and ±25° rotational amplitude, is about 6 times higher than the power generated by the unsprung one under the same excitation conditions.

Results indicate that a sprung rotational electromechanical transducer effectively couples the extremely low-frequency motion (generated during the human-like-arm swing) and improves the energy harvesting performance significantly. This important finding is one step ahead towards self-powered wearables for human-body-induced motion.

These findings are described in the article entitled An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion, recently published in the journal Applied Energy. This work was led by Miah Abdul Halim, Robert Rantz, and Shad Roundy from University of Utah, in collaboration with their industrial partners Qian Zhang, Lei Gu, and Ken Yang from Analog Devices Inc.

ADVERTISEMENT

Comments

READ THIS NEXT

Treating Pigs With A Gene Therapy For Huntington’s Disease

Back in 1993, a gene was discovered to be responsible for the heritable brain disorder called Huntington’s disease. It was […]

Weight Diversity: A Stigma-Reduction Mechanism to Reduce Weight-Based Achievement Disparities

The odds of academic success are stacked against youth with overweight and obesity. On average, youth with higher weight do […]

Using Linker Design In Metal-Organic Framework Synthesis

Metal-organic frameworks (MOFs) are proven to be ideal platforms for heterogeneous catalysis and have been used in a wide variety […]

Will A “Grand Convergence In Global Health” Happen By 2035?

A major question for public health researchers worldwide is, despite considerable progress made in the health status of almost all […]

Energy Harvesting: A Novel Flexible & Biocompatible Hydrogel Diode To Capture Ubiquitous Mechanical Energy

Modern society relies heavily on traditional fossil fuels including petroleum, natural gas, and coal, to sustain the daily needs. However, […]

California Hits 2020 Emissions Reduction Goal Two Years Ahead Of Schedule

California has reached another milestone in its efforts to cut emissions of greenhouse gases. Not only that, but California has […]

CDC Agrees: Sexual Transmission Of HIV Cannot Happen When Viral Load Is Undetectable

HIV was first thought to have entered the United States in the 1970s. Initially, it primarily affected drug users and […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?