ADVERTISEMENT

A Novel Five-Node Feed-Forward Loop Delves Into The Molecular Mechanism Of Ischemic Stroke

 

When Robert Hooke first discovered cells in a sliver of cork, one would have barely imagined that this microscopic entity is a room to complex and dynamic genetic information. Ever since the discovery of DNA, scientists have decoded huge sets of data describing genetic diversity between individuals.

ADVERTISEMENT

I made use of microscopes and some other glasses and instruments that improve the senses…, both in surveying the already visible World, and for the discovery of many others hitherto unknown¬†-Micrographia, by Robert Hooke (1665)

The completion of Human Genome Project and the advent of high-throughput genomics delivered an unprecedented insight into the origin of human diseases based on the genetic constitution. It revolutionized the field of medicine by setting the stage for rapid diagnosis and treatment of debilitating diseases, possibly before the symptoms appear.

However, seeping into the human genome to develop better therapeutic strategies comes with the challenge of grappling with complex genetic interaction and its validation. It calls for a paradigm shift from conventional experimentation techniques to computational approaches, where the genetic interactions are predicted before testing in the laboratory, saving time, effort and money. Computational network models have now become a major tool of choice to study the molecular mechanism of various diseases cutting the bench-to-bedside time for the development of a treatment strategy.

In light of these challenges, our laboratory at National Institute of Technology Calicut, India, computationally predicted molecular interactions to particularly understand ischemic stroke mechanism using a novel five-node feed-forward loop. Feed-forward loops were originally simulated in the field of electronics and are now widely used to study biological interactions and networks. The genetic interactions are associated with transcriptional regulatory networks, where specific regulatory proteins called transcription factors (TFs) control gene expression. microRNAs, a group of small non-coding RNAs, explicitly regulate gene expression at the post-transcriptional level. Together with TFs, microRNAs regulate thousands of genes and each regulatory interaction set is represented as a network motif.

ADVERTISEMENT

Our study demonstrated feed-forward loops built from network motifs with three main components: microRNA, TF, and gene. A massive set of ischemic stroke-related genes, miRNAs, and transcription factors were collected to build three-, four-, and five-node feed-forward loop. We proposed a novel five-node feed-forward loop by introducing miRNA-miRNA interaction. The inclusion of miRNA-miRNA interaction is important owing to the differential expression of multiple miRNAs during ischemic stroke.

Using the proposed computational framework, we identified principal miRNAs, TFs, and genes associated with the innate inflammatory and neuronal survival mechanism following ischemic stroke. The study was extended to identify core regulatory miRNAs in post-stroke neurogenesis, one of the most sought-after processes involved in ischemic stroke recovery.  The proposed five-node feed-forward loop contains all possible regulatory interactions between miRNAs, genes, and TFs and might play a vital role in understanding the complexity of any disease, and not just ischemic stroke.

These findings are described in the article A novel five-node feed-forward loop unravels miRNA-Gene-TF regulatory relationships in ischemic stroke, recently published in the journal Molecular Neurobiology. The work was led by Dr. Rajanikant from the National Institute of Technology Calicut.

Comments

READ THIS NEXT

The Price Of Loneliness Is Sleep, Not Only In Twins

Scientists have found a connection between loneliness and sleep disorders in adolescents. One group, in particular, was at risk.¬† Humans […]

Cells That Bridge Bone And Teeth Are A Novel Tool To Study Complex Bone Diseases

Those of us that have worn braces during childhood have probably never realized that this force on teeth evokes unique […]

A Massive Reservoir Of Carbon Lies Hidden Beneath Alaska’s Permafrost

The world has changed drastically from the beginning of the industrial revolution to now. We have advanced at an accelerating¬†pace […]

Gold-Catalyzed Synthesis And Reaction Pathways

Transition metal-catalyzed addition of an amine across a C-C triple bond (hydroamination reaction) represents a powerful tool for the construction […]

The Surface Roughness Of 433 Eros From The NEAR Laser Rangefinder

The Near-Earth (not hazardous to Earth) asteroid 433 Eros was explored by the NEAR-Shoemaker spacecraft in 2000-2001. This mission, built […]

Understanding How The Brain Controls Movement In Humans

How the human brain controls limb movements is still not fully understood. Many existing models relating brain activity to human […]

Water Transport Within A Proton Exchange Membrane Fuel Cell: Why It Is So Important And How It Can Be Modeled

Scientists typically refer to the rise in global average temperature and the associated effects on Earth‚Äôs climate with the term […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?