A Bacterial Cell Imaging Method Using CRISPR And Microfluidics

With the rise in bacterial strains that are resistant to available antibiotics, there is a growing need to better understand how gene function can influence the sensitivity to antibiotics, as well as to identify potential new drug targets. To this end, bacterial cell imaging is used to directly observe how chemical or genetic interventions alter growth and morphology at the single-cell level over extended time periods.

While static images of individual cells can be informative, additional insights can be gained by assessing how bacteria respond to a range of concentrations of chemicals. For example, antimicrobials can be assessed for their ability to alter cell morphology prior to inhibiting growth. In addition, the consequences of tuning gene expression over a range of transcriptional levels on cell growth and morphology can be tested by image analysis of cells throughout a concentration gradient.

To develop a system that incorporates the above distinct features in a cost-effective platform, we developed a microscale chip designed and built using adhesive tapes and a transparency sheet. This approach offers the advantage of not requiring expensive polymers or lithography fabrication steps typical of more conventional microfluidics systems, while still allowing high-resolution detection of single bacterial cells. The stacked layout of the chip incorporates a thin agar gel membrane over which bacterial cells are cultured. Thin conduits allow us to establish concentration gradients of pre-specified chemicals and drugs in the agar gel membrane. An environmental chamber with an upright benchtop microscope is designed to culture the bacterial cells, along with an autofocusing hardware/software module to adjust the microscope’s focus periodically. With the current setup, we can record both single bacterial cells and their populations over 10 hours automatically with no manual intervention. The hardware used here is low-cost and custom-built using off-the-shelf components and materials.

  To Lube Or Not To Lube: A Review Of Biotribological Treatments
Figure reproduced with permission from ACS from https://pubs.acs.org/doi/full/10.1021/acssensors.9b01031

Bacterial cells were cultured in the platform and exposed to known concentration gradients of ampicillin with single-cell recording for over 10 hours. Morphological changes in the cells at different levels of the cell division inhibitor ampicillin were observed from the video recordings, including cell elongation, bulging, spheroplast formation, and eventual cell lysis.

We next incorporated CRISPR-interference (CRISPRi) into the system to allow direct visualization of cells as they respond over a range of transcriptional activity. For this, we engineered an E. coli strain to regulate expression of the essential ftsZ cell division gene by CRISPRi. By establishing a gradient of the inducer anhydrotetracycline (aTc), we observed a range of morphological responses to depletion of the FtsZ protein, as evidenced by increasing cell length and eventual cell death in response to an increasing concentration of the inducer. We were also able to determine the minimal inducer concentrations necessary to achieve discrete morphological changes in a single experiment.

In our opinion, the ability to control gene expression over a wide range using CRISPRi and measure the resulting responses of individual cells over time offers new opportunities to investigate and overcome resistance mechanisms, including testing the responses to novel antimicrobials and identifying new drug targets through knockdown of gene expression. The ability to monitor cell growth over extended time periods also allows investigation of antibiotic tolerance and persistence, which also can contribute to antibiotic treatment failure.

These findings are described in the article titled, Adhesive Tape Microfluidics with an Autofocusing Module That Incorporates CRISPR Interference: Applications to Long-Term Bacterial Antibiotic Studies, recently published in the journal ACS Sensors. The authors are Taejoon Kong (joint first author), Nicholas Backes (joint first author), Upender Kalwa, Christopher Legner, Gregory J. Phillips, and Santosh Pandey from Iowa State University, USA. Reprinted with permission from the American Chemical Society, Copyright 2019.

Comment (1)

  1. Hi, I used this website to do my science and trust me it will get me an A in my science grade so thank you sciencetrends.com

Speak Your Mind!

READ THIS NEXT

Rising Sea Levels In The Venice Lagoon

Sea level change is a high-profile aspect of climate change. During the 21st century, the average global sea level is […]

Maternal Allocation Of Carotenoids Increases Tolerance To Bacterial Infection In Brown Trout

Rivers and lakes in the Alps are home to numerous aquatic invertebrates and fishes. However, many people have never seen […]

Annihilation And Creation Of Relative Equilibria Around Minor Celestial Bodies

Relative equilibria of asteroids, comets, and satellites of planets are important dynamical characteristic around these minor celestial bodies. Most minor celestial […]

Liquid Metal Activated Al-Water Reaction: A New Approach Leading To “Hy-Time”

When it comes to hydrogen production, people think of the electrolysis or photolysis of water. However, in these processes, the […]

Malaysia’s Last Male Sumatran Rhino Has Died In Captivity

The last male Sumatran rhino has died. Tam, the 30 something-year-old Sumatran rhino, died on Monday, May 27 at the […]

H7N9 Influenza Could Be The Next Big Flu Pandemic

As the weather gets colder, we start preparing for winter and what it has in store for us. Part of […]

Duck-Billed Dinosaurs Uncovered In Aniakchak, Alaska

“…It was the abomination of desolation, it was the prelude to hell,” is how the Jesuit priest, Father Bernard Hubbard, […]