The Charge Of A Carbon Ion

Carbon (C) is a very flexible element and can form a number of different ions. Carbon has an outer shell consisting of 4 valence electrons. This means it can either add 4 electrons to gain a full outer shell or lose 4 electrons to get rid of its outer shell.

Thus, a carbon ion can have a charge of anywhere from -4 to +4, depending on if it loses or gains electrons. Although the most common oxidation states of carbon are +4 and +2, carbon is able to make ions with oxidation states of +3, +1, -1, -2, and -3.

Strictly speaking, carbon almost never forms free-standing monatomic ions, as sodium (Na) or chlorine (Cl) might. Carbon is generally a very stable element that is resistant to gaining or losing electrons. Carbon is almost equally electropositive and electronegative, so it rarely has a need to gain or lose electrons. Most of the time, carbon will just form covalent bonds and share electrons instead of forming an ion. It is entirely possible to create monatomic carbon ions, it just requires a large amount of energy that increases for each subsequent electron that is removed.

Carbon, however, is capable of forming polyatomic ions. The flexible electron structure of carbon allows it to form as the core of polyatomic ions. Many of these polyatomic ions including carbon are essential for life as we know it, and play an important role in living organisms. Others are important for understanding the behavior of minerals, and others are used in industry as fuel, construction materials, and cleaning solutions. Because carbon is such a flexible element, the many possible polyatomic ions carbon can form widely vary in their properties.

What Is An Ion?

An ion is an atom or molecule that has a non-neutral electric charge. Electrically neutral atoms become ions via the removal or addition of electrons. Since electrons have an equal and opposite charge to protons, the net electric charge on an ion comes from the atom having an unequal amount of protons and electrons. Single atoms that are ions are called monatomic ions and multi-atom molecules with a non-neutral electric charge are called polyatomic ions. Positively charged ions are called cations and have more protons than electrons. Negatively charged ions are called anions and have more electrons than protons. Chemists represent ions by adding a positive or negative superscript next to the chemical formula of a substance. A carbon atom that has lost a single electron and so has a positive charge is written as C¹⁺. Conversely, a carbon atom that has gained a single electron and has a negative charge is written C¹⁻.

The tendency for an atom or molecule to form a cation is determined by the substance’s ionization energy. The ionization energy is a measure of how much energy the atom or molecule must absorb to discharge one of its electrons, thus leaving a positive charge. In general, removing a single electron from a neutral atom costs the least amount of energy, with the required ionization energy increasing for each subsequent electron. For instance, the 1st ionization energy for carbon is 1086.5 kJ/mol. That is, it takes 1086.5 kJ of energy to remove a single electron from a mole of carbon. The 2nd ionization energy for carbon is 2352.6 kJ/mol, more than twice the required energy than the first ionization energy.

The tendency for an atom to form an anion is determined by its electronegativity. The electronegativity (EN) of a substance is a measure of how much the substance attracts electrons. The more electronegative an element, the more likely it is to acquire additional electrons, so the more likely it is to form anions. Carbon has an EN of 2.55 on the Pauling scale, a value roughly in the middle. In contrast, Oxygen (O) has an EN of 3.44; very electronegative. Oxygen is very likely to fill its two open valence slots with electrons to form an O²⁻ anion.

Ions made from single atoms are called monatomic. Ions made from molecules with multiple atoms are called polyatomic ions. Polyatomic ions are chemical compounds that have a non-neutral electric charge. Just like monatomic ions, polyatomic ions have an unequal amount of electrons and protons. When writing the formula for a polyatomic, the compound is written in square brackets and the electric charge is written as a superscript outside the square brackets. Ammonium, for example, is a polyatomic ion with a chemical formula of [NH4]+. Ammonium contains one less electron than protons and so have an overall electric charge of +1. Other polyatomic ions include hydroxide ([OH]) and sulfate ([SO₄]2−).

Ions are not the same as polarity. A polar molecule has a partial electric charge while ions have full charges. The charge of an ion is always some integer value. Sodium ions have a charge of +1, chlorine ions a charge of -1. Polar molecules have partially charge dipoles and their charge value is not an integer. The charge of the negative oxygen end in water is about -2/3e, about two thirds the charge of a single electron.

Carbon As An Ion

Monatomic Ions With Carbon

Since carbon is an electrically stable element, it almost never naturally forms free-standing monatomic carbon ions in the form of C³⁺ or C⁴⁻. There is nothing in particular that prevents carbon ions from forming, only the fact that it requires quite a bit of energy to do so. Instead of losing or gaining electrons, carbon most of the time will form a covalent bond via the sharing of electrons. For instance, carbon will form methane (CH4) by sharing its 4 outer electrons with hydrogen Hydrogen is not electronegative enough to take electrons from carbon and carbon is not electronegative enough to take electrons from hydrogen. So, carbon just shares each of its 4 outer electrons with the single outer electron of each hydrogen.

One way to form free-standing monatomic carbon ions from a cloud of gaseous carbon is with a laser. Carbon will sublime into a gas at high temperature. Then, a laser can be fired at the individual carbon atoms to knock off electrons to make carbon ions. Theoretically, you could completely ionize a carbon atom by removing all of its electrons this way. This process is not particularly practical or useful as each subsequent electron removed from the carbon atom require more and more energy.

Polyatomic Ions With Carbon

Carbon, however, is capable of naturally making a number of polyatomic ions. Because carbon is a very flexible element, the various polyatomic ions it can form have very different chemical properties. Some are relatively dull and inert, while others can be dangerous or extremely volatile. Carbon is among the most frequent constituent of the various known naturally occurring polyatomic ions.

Carbon and nitrogen (N), for example, combine to form the anion cyanide ([CN]), an extremely poisonous compound. Cyanide is composed of a carbon atom triple-bonded to a nitrogen atom. Cyanide is naturally produced by many plants and fungi, often as a defense mechanism. Cyanide can bond with a hydrogen atom to form hydrocyanic acid (HCN) an extremely corrosive compound that can be fatal in small doses.

Another common polyatomic ion containing carbon is carbonate ([CO₃]2−). Carbonate ions form ionic bonds with many other compounds to form salts and minerals. Most sedimentary rocks contain carbonate ions, normally bonded to calcium to form calcium carbonate (CaCO3). Other carbonate compounds include iron carbonate (FeCO3) and sodium carbonate (Na2CO3). Calcium carbonate is also the main component of mollusk shells and coral skeletons.

There is an important family of compounds called carbides that are formed by bonding carbon ions with highly electropositive alkali and alkaline earth metals. These carbides can be divided into three group, dependent on the character of the central carbon ion(s). Methanides are formed with a C4− core, acetylides with a C₂2− core, and sesquicarbides with a C₃4− core. Most of these carbide compounds can be produced by decomposing covalently bonded carbon compounds.

The compound acetate is an important polyatomic ion containing carbon. Acetate ( [CH3CO₂]or [CH3COO]) is ubiquitous in nature as it is one of the primary building blocks of biosynthesis. Acetate in the body is used to create fatty acids, one of the most important lipids, and to make acetyl-CoA, which is involved in cellular respiration.

Carbon Ion Therapy

Carbon ions have also found a niche use for treating tumors via radiation therapy. Carbon radiation therapy consists of treating tumors by firing heavily ionized carbon particles at tumors. The ionized carbon particles can damage the cellular structure of tumor cells, halting their growth and killing them. Carbon ion therapy shows benefits over traditional forms of radiation therapy in that the heavier nuclei of carbon atoms allow for a more precise and powerful treatment. Heavy nuclei, as opposed to photon radiation, are capable of being steered by magnetic fields, so they can be manipulated more precisely to target tumors.

About The Author

Alex Bolano

When Alex isn't nerdily stalking the internet for science news, he enjoys tabletop RPGs and making really obscure TV references. Alex has a Masters's degree from the University of Missouri-St. Louis.

Speak Your Mind!


Coal Pros And Cons

Coal pros and cons can be broken down into relatively cheap, widely available, and low capital investment for coal pros compared to environmentally damaging, the highest carbon dioxide emitter, and finite resource for coal cons. Coal continues to be a popular energy source in many countries around the world. There are two main reasons for […]

What Is The Future For Water Reuse In Europe?

Water scarcity is affecting many regions worldwide, and water reuse can help to address this issue. However, its potential remains largely untapped in the European Union. Possible obstacles to water reuse practices in Europe include (i) an inconsistent national legislation across Member States, (ii) water reuse costs (e.g., upgrade of urban wastewater treatment plants (WTPs) […]

Determining The Physical Parameters Of Rigid Porous Materials Using Ultrasonic Reflected Waves

A porous material is a medium containing pores filled with a fluid (liquid or gas). The skeletal part is usually solid. Many natural and made mediums such as rocks, soils, bones, plastic foams, fibrous materials, cement, and ceramics can be considered as porous materials. Among these materials, such as plastic foams and fibrous, are frequently […]

Iterative Design Of Solar Reactor For Hot Spot Reduction And Enhanced Temperature Uniformity  

Published by Nesrin Ozalp and Hamed Abedini Najafabadi Mechanical and Industrial Engineering Department, University of Minnesota Duluth, 55812, Duluth, MN; School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran These findings are described in the article entitled An advanced modeling and experimental study to improve temperature uniformity of a solar receiver, recently published in […]

Can Babies Think Hard?

Our lab studies how well babies can remember objects. The test that we have developed is a baby-friendly version of the card game Memory, where cards are shown face-up (on a computer screen), then turned face-down. As in the original game, the goal is to find matching cards. But, instead of pointing (these children are […]

Solar Industry Makes Rapid Progress Despite Opposition

Solar power has occasionally been referred to as a “disruptive technology”, and it is becoming increasingly easier to see why. As solar power gets cheaper and more efficient it is destabilizing old systems of energy and industry, particularly fossil fuel based economies. While Donald Trump may have promised to bring coal jobs back to the […]

Studying Mechanisms In The Hippocampus Related To Memory

For more than 50 years now, doctors have known that the hippocampus is important for memory in humans. Patients with hippocampal damage presented with the striking inability to form new memories. These cases ultimately led to the general understanding that the hippocampus serves as sort of a central hub that talks to other brain areas […]