ADVERTISEMENT

Study Finds Compound That Can Dope Electron Acceptors For Solution-processed Electronics

Flexible, portable and wearable electronic devices including displays, energy powers, logic circuits have been attracting great interest that could significantly change peopleā€™s lifestyles.

Organic or polymer semiconductors that comprise of carbon, hydrogen, oxygen and/or other atoms (sulfur, nitrogen etc.) are solution-processable, printable and can realize most of the optoelectronic devices (solar cells, light-emitting diodes, transistors, photodetectors etc.) that traditional semiconductors such as silicon, III-V compound can do.

ADVERTISEMENT

Like in the traditional silicon semiconductors, doping is a very important strategy to change or tune the physical properties of the organic semiconductors, i.e. charge carrier density, mobility, and energy level. These properties significantly influence the performance of the corresponding optoelectronic devices, like organic light-emitting diodes, transistors, solar cells as well as recently perovskite-based electronic devices.

So far, solution-processed n-dopants that can significantly increase the electron concentration and shift up the Fermi level towards the lowest unoccupied molecular orbital (LUMO level) of n-type organic semiconductors are still few and highly desirable.

Here, Prof. Yinhua Zhou and co-workers from Huazhong University of Science and Technology report that an organic base 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) can act as a very effective n-dopant for the solution-processed electronic devices in their new publication in Advanced Functional Materials.

The DBU has been generally used in organic chemistry as a catalyst, a ligand, and a non-nucleophilic base. It can be purchased from many chemical vendors at a low cost. They open up its news application as a solution-processed dopant for new optoelectronic applications.

ADVERTISEMENT

The researchers found the DBU could effectively dope many n-channel organic molecules or polymers, like fullerenes. The efficient charge transfer and doping are due to the strong its electron-donating property. They observed the DBU-doping changed the physical property of the fullerene acceptors (increasing the electrical conductivity and shifts the Fermi levels).

The DBU-doping enhanced the power conversion efficiency of the solar cells, increased the electron mobility and lower the threshold voltage PC61BM-based n-channel field-effect transistors.

This study,Ā An Amidine-Type n-Dopant for Solution-Processed Field-Effect Transistors and Perovskite Solar Cells was recently published in the journalĀ Advanced Functional Materials.

Comments

READ THIS NEXT

Was An Alien Mummy With 3 Fingers Discovered In The Atacama Desert?

Back in 2003, the discovery of a strange mummy sparked a debate about its origins. Could it be that the […]

Catch 22? Reading Requires Understanding, And Understanding Requires Reading

In order to read fluently, children also need to understand what is in front of them. Researchers from Florida have […]

TROPOMI: Next-Generation Global-Scale Atmospheric, Carbon, And Climate Data

The international scientific community has been studying climate change and increases in the atmospheric concentrations of carbon dioxide (CO2) for […]

How The Behavior Of Fronts In Ecosystems Affects Regime Shifts

Ecosystems are constantly perturbed by both natural and human-induced disturbances, ranging from storms and fires to grazing and clear-cutting. If […]

Finding A Compromise When Inducing Small-Size Earthquakes

In the sixties and seventies of the last century, Raileigh and coworkers experimented with the injection of fluids in the […]

How Many Legs Does A Spider Have?

You may be wondering how many legs does a spider have, spiders have eight legs and belong to the arachnids […]

Soil Organic Carbon In Savannas Decreases With Anthropogenic Climate Change

Dr. Kebonye Dintwe and Dr. Gregory Okin from the University of California Los Angeles (UCLA) investigated the response of soil […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?