ADVERTISEMENT

Working From Cultured Cells To Identify Novel Guardian In The Progression Of Chronic Kidney Disease

Our planet has a self-regulating ecosystem that stabilizes the temperature, climate, and other external environments. Water covers more than 70% of the land surface, and the water cycle plays an indispensable role in the earth’s environmental regulation. Coincidentally, the proportion of water in the human body is close to that of the earth’s surface. Undoubtedly, the circulation of water is vital to human health. Our kidneys work as superfluid percolator, filtrating approximately 50 gallons of initial urine every day. With the decline of the number of nephrons and the scar formation induced by various chronic diseases, the renal function will be irreversible and gradually decreased (Figure 1).

Figure 1-Collagen I deposits in a human fibrotic kidney. Collagen type I protein was labeled with red fluorescence, the proximal tubules were labeled with green fluorescence, and the cell nucleus was labeled with the blue fluorescence. (These unpublished photos are taken by Peng Wang and posted here with his permission)

TGF-β has been recognized as the most vicious mediator in the pathogenesis of renal fibrosis and plays an important role in promoting fibrosis in renal cells. TGF-β initiates its cellular actions by a signaling cascade effect; among this process, Smad3 phosphorylation has been recognized as a crucial step in TGF-β1/Smads signaling and even can be a potential target to slow down renal fibrosis.

ADVERTISEMENT

Our exploration started by screening TGF-β signaling associated with long noncoding RNAs (lncRNAs) in tubular epithelial cells. During rounds of selection, we identified a kidney-enriched lncRNA, termed as lnc-TSI, that functioned as an endogenous inhibitor of TGF-β1/Smad3 pathway and regulated renal fibrogenesis. First of all, we found that lnc-TSI was up-regulated by Smad3 and, in turn, inhibited Smad3 phosphorylation in a negative feedback loop.

Next, we revealed that lnc-TSI bound the MH2 domain of Smad3 and blocked the interaction between TβRI and Smad3. This biological mechanism makes the role of lnc-TSI specific to Smad3. In animal experiments, delivering human lnc-TSI to mouse kidneys effectively alleviated renal fibrosis in two mouse models, suggesting that lnc-TSI acted as a guardian ameliorating renal fibrosis. Last but not least, in a cohort of patients with biopsy-confirmed IgA nephropathy (IgAN), lnc-TSI renal expression negatively correlated with the renal fibrosis index.

In the longitudinal study, 32 IgAN patients with low expression of renal lnc-TSI at initial biopsy had more pronounced increases in their renal fibrosis index and experienced stronger declines in renal function at repeat biopsy at a mean of 48 months to follow-up. These data suggest that lnc-TSI reduced renal fibrogenesis through negative regulation of the TGF-β/Smad pathway and may be used as a therapeutic target.

Chronic kidney disease (CKD) has become a “public health problem” all over the world. In 2010, 2.6 million uremic patients worldwide relied on dialysis or kidney transplantation for life support due to renal dysfunction, and 2.3~7.1 million patients worldwide died prematurely due to unavailable dialysis or kidney transplantation treatment. Therefore, any strategy that can prevent or delay the progression of chronic kidney disease to uremic has extremely important social and economic significance. The discovery of new targets to intervene in renal fibrosis is the first step toward the establishment of clinical prevention strategies.

ADVERTISEMENT

The traditional consensus in biology is that proteins are the performers of all life processes. DNA and RNA are just the blueprints for protein synthesis. However, studies of the human genome have shown that the vast majority of DNA and RNA are not directly involved in protein synthesis. At present, increasing studies have confirmed that lncRNAs are involved in the regulation of various physiological and pathological processes, and their regulation form is more specific and flexible than protein. Our study shows that lncRNA can be applied as a “key node molecule” of the intracellular signal transduction pathway to regulate the pathophysiological process of diseases.

These findings are described in the article entitled Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway, recently published in the journal Science Translational Medicine.

Comments

READ THIS NEXT

Woman’s Advanced Breast Cancer Sent Into Remission With Her Own Immune Cells

Recently a woman who had advanced breast cancer had her cancer cleared by a form of therapy that utilized her […]

Cascade Use Of Bamboo For Several High-value Products: Food For Specified Health Use And High Performance Electric Double-layer Capacitors

Nowadays, “bamboo forests” are becoming a serious problem in Japan, especially in western Japan including Kyushu Island.  A few decades ago, […]

Resolving Nightmares Using A Lucid Dreaming Technique

Imagine that you could become aware that you were dreaming, or “lucid,” in your dreams at any time. Countless researchers […]

Might Accurate Heartbeat Perception Increase the Risk for Alcoholism?

Many individuals cope with anxiety by consuming alcohol. Because alcohol effectively reduces tension, the drinking is reinforced and, with time, […]

The Impact History Of Asteroids Revealed In Cosmic Dust

The asteroid belt is a collection of approximately 300,000 objects greater than 1km in diameter. These solar system “small bodies” […]

Understanding The Inner Workings Of “Fake News”

One of the least desirable outcomes of the digital age is a pandemic of misleading and deceptive misinformation and disinformation […]

New Study Finds Information Can Be Addictive, Just Like Snacks, Money, And Drugs

New research conducted by UC Berkeley’s Haas School of Business implies that information can be just as addictive as snack […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?