ADVERTISEMENT

Nickel As A Catalyst For Benzene And Cyclohexane

Catalysts are substances used to control the production of chemicals by changing how fast reactions occur. The most familiar type to most people is the catalytic converter used to clean car exhausts, but most things made by industry use a catalyst at some point in their production. In 1998 it was estimated that catalysts contributed around 15 trillion dollars to the world economy ā€“ about a third of the total. Nature also has its own form of catalysts in enzymes, which control the chemical reactions necessary for life.

Because catalysts are so important, there is a lot of interest in how they work, which can be very different depending on their circumstances. Currently, catalysts are mostly optimized for reactions through trial and error, but it would be ideal if we could design catalysts tailored to their use. This would reduce energy bills, give better products and reduce waste.

ADVERTISEMENT

Molecules can only react when they are close to each other and in the right orientation. Many catalysts work by attracting reactants and sticking them to their surfaces. This process is called adsorption. It is similar to absorption but differs because the molecules stay at the surface, rather than penetrating deep inside the material.

In this way the adsorbed molecules are concentrated at the surface and are more likely to be close to each other, making reactions more likely. The bonding between reactant and catalyst can also affect the chemical bond strengths within the reacting molecules and lower the energy barriers for reactions. This interaction is not well understood, so any new information is of interest.

Because there may only be a layer as thick as one molecule on the catalyst surface it can be difficult to measure. One method we can use is quasielastic neutron scattering, which measures small changes in the kinetic energy of neutrons that scatter from our sample. Neutrons interact weakly with metal, but strongly with hydrogen so we can see any hydrogen-containing molecules stuck on a metal catalyst surface. This is similar to medical x-rays, where the beam goes through the flesh, but bones show up. Neutron beams go through a metal catalyst, but the surface hydrogen-containing layer shows up. Neutrons scatter differently from hydrogen if it is moving or if it is still and so we can use them to get information about the motion of adsorbed molecules.

A recent experiment has looked at the motion of benzene and cyclohexane on a nickel catalyst using neutron scattering and computational modeling. It found that at low temperatures the molecule is rigidly held against the metal surface, with very little motion. As the temperature is increased, it jumps around on the surface but remains stuck. At higher temperatures, the distance between the molecule and the catalyst increases and the molecule moves around more. It can get enough energy to break away from the surface, and the computer models suggest that the molecules can move over each other making short-lived stacks of molecules on the surface of the catalyst.

ADVERTISEMENT

Using simulation and experiment together gives a better picture of these processes and should help in the interpretation of future results using more complicated systems. Due to the highly penetrating nature of neutrons, these experiments may also be extended to more extreme conditions that are challenging to study using other techniques.

These findings are described in the article entitledĀ Surface diffusion of cyclic hydrocarbons on nickel, recently published in the journalĀ Surface Science.Ā This work was conducted byĀ I.P.Ā Silverwood andĀ J.Ā Armstrong from theĀ ISIS Neutron and Muon Facility.

Comments

READ THIS NEXT

Who Invented Pizza?

How was pizza invented? Who invented pizza? Like so many questions regarding the invention of objects, this question is more […]

Urban And Sick And Rural: Psychiatric Disturbances Affect Children In Areas With Especially Low Neighborhood Solidarity

For years, scientists have seen an association between city living and psychiatric disturbances such as schizophrenia in adults. Now they […]

Intriguing Flexible Devices Based On Mechanoluminescence

Mechanoluminescence (ML), also called triboluminescence (TL), refers to the phenomenon/process that materials could emit light under mechanical stimuli, e.g., friction, […]

The Parts Of An Animal Cell

There are 13 main parts of an animal cell: cell membrane, nucleus, nucleolus, nuclear membrane, cytoplasm, endoplasmic reticulum, Golgi apparatus, […]

Looking At Versus Focusing On Faces: What Attracts Our Attention?

Whether we are walking on a downtown street or searching for a friend in a crowd, it is intuitive that […]

Risks Associated With Using Sulfonylureas As A Treatment For Type 2 Diabetes

Sulfonylureas are antidiabetic drugs that have been used for more than 50 years in the treatment of type 2 diabetes. […]

A New Approach For High Energy Density Li-Ion Batteries

The golden era of electric mobility may be upon us. In 2016, ~160,000 plug-in electric vehicles were sold in the […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?