A New Approach To The Electrochemical Detection Of Organophosphorus Pesticides

The organophosphorus pesticides (OPs) are synthetic esters, amides, and thiol derivative of the phosphoric, phosphorotioic, and phosphonothioic acids (Fig. 1)

Fig. 1. Chemical structure of the organophosphorus pesticides. Republished from Open Access

They are the most largely used pesticides (Fig. 2) during the last decades because of their high efficiency and low persistence in the environment.

Fig. 2. Pesticides consumption, according to FAOSTAT. Margarita Stoytcheva

The increased and indiscriminate OPs application and the related public and environmental concerns implicated the development of sensitive, selective, specific, rapid, simple, and economic analytical methods for their monitoring, such as the electrochemical (bio)sensors-based techniques.

Fig. 3. Environmental electrochemical sensors application. Margarita Stoytcheva

The electrochemical biosensors for OPs determination are mainly amperometric including the enzyme acetylcholinesterase (Ach) or the enzyme organophosphorus hydrolase (OPH) as biological recognition element. The thiocholine oxidation current, generated upon the Ach-catalyzed hydrolysis of acylthiocholine is registered as an analytical signal of the Ach-based sensors. It decreases in the presence of organophosphorus pesticides, because of the provoked enzyme inhibition.

The Ach-based sensors are very sensitive, but they are not specific to the individual organophosphorus compounds. In contrast, the OPH-based sensors, although less sensitive, allow the selective determination of the group of the OPs with electroactive nitrophenyl leaving groups, such as paraoxon, parathion, etc., and their distinction in the presence of other OPs. The sensor response is the oxidation current of the nitrophenols produced upon the OPH-catalyzed OPs hydrolysis.

The selective determination of the great number of OPs with phenolic leaving groups, which are not electroactive still remains a challenge. A successful approach to overcome this problem was suggested by Stoytcheva et al. (Electroanalysis, 2017, 29, 2526-253) applying a bi-enzyme amperometric sensor.


The biosensing platform was created by simultaneous enzymes co-immobilization by controllable and reproducible one-step electrodeposition onto the surface of a glassy carbon electrode of chitosan-entrapped carboxylated multi-walled carbon nanotubes, OPH, and horseradish peroxidase (HRP). The functioning of this approach is illustrated by the following reactions, selecting prothiofos as an example (Fig. 4).

Fig. 4. Reaction sequence illustrating the principle of the prothiofos determination by applying a bi-enzyme (OPH-HRP) amperometric sensor. Margarita Stoytcheva

As shown in Fig. 4, the reaction sequence starts with the OPH-catalyzed hydrolysis of prothiofos, which results in 2,4-dichlorophenol (DCP) production. The second reaction step, i.e. the HRP-catalyzed oxidation of the generated in the enzymatic layer DCP using H2O2 as an oxidant, leads to electroactive phenolic radicals formation. The analytical signal of the bi-enzyme sensor is the reduction current of the obtained radicals proportional to the DCP concentration in the presence of a constant amount of H2O2, as well as to the prothiofos concentration.

The developed bi-enzyme sensor allows the determination of the organophosphorus compounds with phenolic leaving groups (Fig. 5) excluding the interference of the nitrophenyl-substituted OPs.

Fig. 5. Determination of OPs with phenolic leaving groups by applying a bi-enzyme (OPH-HRP) amperometric sensor. Margarita Stoytcheva

These findings are described in the article entitled Bi-enzyme Electrochemical Sensor for Selective Determination of Organophosphorus Pesticides with Phenolic Leaving Groups, recently published in the journal Electroanalysis, 2017, 29, 2526-532.

This work was led by Margarita Stoytcheva, Roumen Zlatev and Gisela Montero from the Instituto de Ingeniería of the Universidad Autonoma de Baja California at Mexicali, Mexico, Zdravka Velkova from the Medical University of Plovdiv, Bulgaria, and Velizar Gochev form Plovdiv University, Bulgaria.




Map Of Florida West Coast: Cities And Beaches

Glance at a map of Florida’s west coast and it’s hard to grasp just how beautiful the beaches and small […]

Do Addicts Have Free Will? What Research Says About The Nature Of Addiction

‚ÄúGoing cold turkey‚ÄĚ and ‚Äúkicking the habit‚ÄĚ are familiar idioms, but their origins are not. Some (and perhaps many) heroin […]

Velocity Equation (Formula): How To Find Velocity

The equation for velocity is one of the fundamental formulas in physics. While many physics concepts have scientific definitions different […]

Are There Turtles Without A Shell?

Perhaps you are wondering if turtles without shells exist. The answer is yes, though only in rare circumstances. Though some […]

Determining Soil Moisture Globally Through Satellite Measurements

Soil moisture is an important land surface variable, which is present at land-atmosphere interphase and influences the hydrologic, atmospheric, climate, […]

The Green World Theory: Diving Under Coastal Ecosystems

The world is green, apparently‚Ķ This trivial assertion unleashed an ecological theory, which is now approaching half a century of […]

Most Populated Countries Around The World In 2019

What are the most populated countries in the world in 2019? This year the most populated countries are, in order: […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?