Nanoscale Multifunctional Tubular Networks

Block polymers can self-assemble into an ever-increasing variety of nanoscale-sized periodic patterns. The simplest block polymer is an A/B diblock – a linear chain comprised of covalently linked A monomers followed by a similar a run of covalently linked B monomers with a single covalent junction joining the two blocks.

At high temperature or when mixed into a solvent mutually good for both blocks, the system is homogeneous, but upon cooling or solvent evaporation, the A monomers segregate from the B’s and vice versa, leading to nearly pure domains of A and B that are periodically juxtaposed since the junction bonds belong to both blocks and must reside on the interface between the A and B domains. This forces microphase separation with the length scale of the domains set by the sizes of the respective A and B runs of diblock.

So far these simple AB diblocks have formed a number of interesting patterns – that vary with the volume fractions of the blocks. At low minority block content, there are various packings of spheres of the minority block, followed by hexagonally packed cylinders at higher minority volume fraction and then most interestingly, 3D tubular networks of various symmetries leading to a 1D periodic alternating A layer- B layer structure which occupies the large middle portion of the phase diagram. The basic considerations that govern what equilibrium shapes the A and B blocks choose to take as function of their size and volume fraction (and even chain architecture, e.g. branched molecules in addition to linear and for 3 (or more) blocks) are now relatively well understood for the non-tubular structures. However, the growing set of microdomain network structures constitute a bit of a theoretical puzzle. Of the various microdomain patterns, the 3D networks are the most complex and arguably the most interesting from both the fundamental and applied points of view.

There are 4 patterns: two cubic ones – the double gyroid (shown in the figure with red and blue networks) and the double diamond, and two lower symmetry orthorhombic structures, the O70 and O52. . All are characterized by continuity of each type of domain in all 3 directions of space. The gyroid and orthorhombic networks are comprised of nodes where 3 short cylinder-like struts meet, while the double diamond arrangement consists of tetrahedral symmetry nodes where 4 tubular units meet. The bicontinuous nature of these networks is key to how such structures can display outstanding multifunctionality. Some important physical property combinations are unique to networks such as outstanding strength, stiffness, yet excellent conductivity of charge and mass, arising for example from the mechanical properties of the A phase and the transport behavior of the B phase.

Also, the 3D symmetries give rise to unusual wave propagation phenomena with band gaps due to the scattering of both optical and sound waves. Since the bicontinuous nanoscale tubular network structures are self-supporting even when a constituent is removed, additional functionality can be readily accessed by etching away one component (since it is continuous, the entire component can be removed). Such a nanoporous material can then be used as a template for infiltration leading to completely unprecedented properties and performance.

These findings are described in the article entitled Nanoscale 3D ordered polymer networks, published in the journal Science China Chemistry. This work was led by Edwin L. Thomas from Rice University.

About The Author

Edwin L. Thomas

Edwin L Thomas is a materials scientist and the Dean of Engineering at Rice University · Department of Materials Science and NanoEngineering.

 

Speak Your Mind!

READ THIS NEXT

What Is The Lifespan Of A Fly?

How long does the average fly live? Well, the lifespan of a fly differs depending on the type of fly. The average lifespan of a housefly is about 28 days, so 4 weeks. There are many different species of fly with lifespans ranging from just a few days to almost two months. By far though, […]

A Novel Mechanism Of B Cell Activation By Bacteria

The bacterial species Burkholderia ambifaria belongs to the Burkholderia cepacia complex, a group of related bacterial strains, which can cause opportunistic infections in immunocompromised hosts. These bacteria produce various virulence factors, among which are soluble carbohydrate-binding proteins, so-called lectins. The lectin BambL from Burkholderia ambifaria binds to the carbohydrate fucose with high affinity. Fucose residues […]

Harnessing The Elements To Feed Microbes

The vast majority of fuels and chemicals used by humans are made from fossil carbon. Bioproduction from microorganisms, such as bacteria or yeast, might provide a way to wean us from our dependence on these unsustainable sources. In fact, microbes are already cultured at a huge scale across the planet – think breweries – and […]

Scientists May Have Found A New “Organ” In Humans

As much as we know the world around us, our bodies continue to surprise us with new discoveries and changes. Recently, researchers have uncovered a potential new organ within us. As researchers and ancient doctors explored the human body to understand it and find out the problems that ail us, they slowly came to understand […]

The Walking Stick Bug

Walking stick bugs are one of the coolest insects, and not just solely for the fact that they quite literally look like sticks that can walk. These bugs are extremely interesting, and there are over 3,000 different species of walking sticks. With over 3,000 different species you might think that they all look alike, but these different species […]

What Is A Sand Dollar?

The term sand dollar refers to several species of flattened burrowing sea urchins that belong to the order Clypeasteroida. Sand dollars, also sometimes called sea biscuits or sea cookies, are closely related to urchins, sea cucumbers, and starfish. They are found in temperate zones virtually all over the world, beneath the mud and sand in bodies of water. Sand […]

An Invader In The Galapagos: When History And Genetics Merge

The study of genetics deals with a broad range of topics, from the molecules responsible for heredity to the adaptation and evolution of organisms. Within this spectrum is a niche where genetics can turn into a historical science and can be used to test the historical record of a species, thereby better understanding its story. […]