Hybrid Materials As Potential NIR Absorbers For Organic Electronics

Modern society is largely a plastic-based culture in which organic (carbon-based) plastics have become more ubiquitous than other common materials such as metals, glass, or ceramics. As a result, some have postulated that there is sufficient justification to refer to the period beginning with the 20th century as the Age of Plastics. Although common organic plastics comprised of polymers such as polyethylene or polystyrene are electrically insulating materials, it was discovered in the 1960s that certain types of organic polymers could be made to exhibit semiconducting properties.

By the late 1970s, this had been expanded to even include plastics with metallic conductivity. This subclass of organic polymers, known as conjugated or conducting polymers, has thus led to materials that combine the properties of common plastics with the electronic properties of classic inorganic semiconductors. The development of these materials has then resulted in the current field of organic electronics, which can, in turn, provide the realistic promise of commercially-available flexible electronics in the near future.  Current examples of these types of electronic devices include plastic solar cells, plastic transistors, and organic light-emitting diodes (OLEDs), the last of which are finding growing use in modern smartphone displays and HDTVs.

One current limitation of these materials, however, is their inability to effectively absorb light very deep into the near-infrared (NIR) spectrum (700-2500 nm). Materials capable of absorbing NIR light could find application as the active sensing elements of NIR photodetectors, which are an important component of light-based telecommunications which utilize wavelengths of 1150, 1350, and 1550 nm to transmit data through fiber-optic cables. Although many conjugated polymers can absorb light down to 1000 nm, only a handful of organic polymers can absorb light at longer wavelengths. Even those few rare examples are still not capable of absorbing light at the two longest wavelengths, which precludes their ability to serve as NIR photodetectors for these applications.

Developing New Hybrid Materials

To address this problem, the Rasmussen group at North Dakota State University has been developing hybrid materials that combine segments of the conjugated polymer polythiophene with metal complexes known as metal dithiolenes. Metal dithiolenes were first pioneered in the early 1960s and have generated significant interest due to their conductive and magnetic properties in the solid state. More importantly for the focus here, however, is that many metal dithiolenes also strongly absorb in the NIR.

A few real-world examples coming from the Rasmussen lab: A freestanding conjugated polymer film (A); Electrochromic films (B); Solar cell architecture and device (C); and OLED architecture and emitting device (D). Credit: Seth C. Rasmussen

By appending short segments of thiophene chains (oligothiophenes) to a nickel dithiolene core, the Rasmussen group has successfully generated materials that are structurally and electronically similar to polythiophenes, while also exhibiting strong NIR absorbance down to 1400 nm.  In addition, the energy of this NIR absorbance has been shown to be dependent on the length of the oligothiophene units, thus even lower energy absorbance should be possible with the application of longer oligothiophene segments.

Lastly, as with typical conjugated polymers, the properties of these hybrid materials can be tuned by changing various aspects of their molecular composition. As an example, it has most recently been found that by replacing two carbons of the molecular structure with nitrogen, the hybrid materials can be made to be more electronically stable and thus more promising for the targeted device applications.

This study, Thiophene-Extended Nickel Thiazoledithiolene: π-Extended Fused-Ring Metal Dithiolenes with Stabilized Frontier Orbitals, was recently published in the European Journal of Inorganic Chemistry.

About The Author

Seth C. Rasmussen

Seth C. Rasmussen is a professor of chemistry at North Dakota State University. His research focuses on the synthesis and characterization of novel conjugated organic materials, as well as their application to organic photovoltaics (OPVs or solar cells), photonic light detectors, and organic light emitting diodes (OLEDs).

Speak Your Mind!


Snake Eggs: How To Identify With Pictures

The eggs of snakes can be identified by a number of different characteristics including the appearance, hardness, and shape of the eggs. Snakes usually lay their eggs in sand or soil which helps incubate the eggs, and then most species of snakes will leave and not watch over the nest after laying the eggs. Let’s […]

Do Addicts Have Free Will? What Research Says About The Nature Of Addiction

“Going cold turkey” and “kicking the habit” are familiar idioms, but their origins are not. Some (and perhaps many) heroin addicts quit on their own and do so all at once, hence the goosebumps and spasms that often accompany withdrawal. In contrast, no one goes “cold turkey” from diabetes, heart disease, or schizophrenia. No one […]

SIOC Scientists Upgrade The Mechanism Of Pictet–Spengler Reactions

First discovered in 1911, the Pictet–Spengler reaction ranks among the most fundamental reactions in organic chemistry. It has found broad applications in the syntheses of indole-derived natural products and pharmaceuticals. For example, a Pictet–Spengler reaction is involved as one key step in the synthesis of Cialis, a drug for treating erectile dysfunction (ED) or benign […]

Will Increasing Demand For Cobalt Impact The Environment?

Consumption of many raw materials has steadily increased since World War II, and demand is expected to continue to grow in response to the burgeoning global population and economic growth, especially in emerging economies such as Brazil, Russia, India, and China. We are also using a greater variety of metals than ever before. New technologies, such as those […]

New Building Blocks For Drug Discovery Are Getting Closer: Gem-difluorocyclopropane-derived Amines

Modern drug discovery relies heavily on the ability of chemists to produce good starting points for producing high-quality lead compounds. Several concepts were established in the last two decades to aim synthetic organic chemistry onto the proper areas of chemical space, in particular, the so-called lead-oriented approach which describes paradigm shift towards low-molecular-weight, relatively hydrophilic, […]

Treefrogs Use Quantity Discrimination Abilities To Choose Among Microhabitats

Counting, estimating sizes, and performing other tasks that require quantitative abilities are an important part of our daily life and have been long believed to be a uniquely human ability. However, there are situations in which also other animals can take advantage of discriminating between groups of objects with different numerosity or between objects that differ […]

Expanding The Use Of Glucose Monitoring Technology To Enhance Diabetes Care

Children and adults with type 1 diabetes must test their blood sugar (glucose) four to seven times daily to provide the information necessary to adjust their insulin adequately, avoiding too many “highs” and “lows.” For each test, a finger prick is needed to get a drop of blood to put on the test strip – […]