Gold-Catalyzed Synthesis And Reaction Pathways

Transition metal-catalyzed addition of an amine across a C-C triple bond (hydroamination reaction) represents a powerful tool for the construction of a wide range of nitrogen heterocycles.  Intramolecular hydroaminations of 2-alkynylaniline derivatives (Compound 1) to give interesting indole heterocycles (Compound 2) have been widely investigated.

Over the past decades Au, Pd, Ir, Cu, Ag and Pt catalysts have been successfully employed for this transformation, that has been carried out also in the presence of Lewis acids such as In and Zn halides. Coordination to the catalysts inverts its classical reactivity of the triple bond (that usually reacts with electrophiles) and activates it towards an intramolecular nucleophilic attack.  


Compounds (Compound 3) represents a particular class of 2-alkynylanilines, bearing an electron-withdrawing group conjugated with the triple bond. Cyclization of substrates (Compound 3) through transition-metals catalyzed reactions to give indoles (Compound 4) has not been reported so far. This is probably due to the polarization of the triple bond induced by the carbonyl, that hampers the nucleophilic attack of the nitrogen to the a-carbon.

We have recently reported (Adv. Synth. Catal. 2017, 359, 3371-3377) that in the presence of highly reactive (JohnPhosAuMeCN)SbF6  (known also as Echavarren’s catalyst), an unexpected intermolecular reaction occurs, with the formation of interesting eight-membered dibenzodiazocine derivatives (Compound 5). A variety of groups R including aryl, heteroaryl, vinyl and alkyl can be introduced in the products. Moreover, esters (R = -OMe) can be used in this reaction.


Dibenzodiazocines represent an uncommon class of heterocycles, that is of interest in medicinal chemistry and in organometallic chemistry; in material science, copolymers containing (Compound 5) find potential application as molecular actuators. Moreover, a class of analogs of (Compound 5), i.e. Tröger’s base and its derivatives, possess a chiral cleft structure that makes them interesting scaffolds in supramolecular chemistry.


The methodology described here allows an easy and efficient synthesis dibenzodiazocines with a wide range of substituents. The mechanism of the reaction has been studied: an initial intermolecular reaction affords an intermediate, that subsequently undergoes the final cyclization. Both these steps are catalyzed by the Au(I).

We hope that compound 5 will find application as precursors of new materials that can act as actuators. These are devices able convert a form of energy into motion such as light-driven molecular machines.

This study, Gold-Catalyzed Synthesis of Dibenzo[1,5]diazocines from β-(2-Aminophenyl)-α,β-ynones was recently published in the journal Advanced Synthesis & Catalysis.



Assessing The Problem Of Simulating Courtyards: The Case Of ENVI-met

Traditional architecture has always known how to build according to climatic conditions in a particular location. As mere examples, we […]

Functions Of The Golgi Body

The Golgi body, also sometimes referred to as the Golgi apparatus or Golgi complex, is an intracellular organelle that is responsible for […]

What Does The Nucleus Do?

DNA is the most important molecule for life. DNA contains the genetic code unique to each individual; the genetic code […]

Grad Student Solves Quantum Verification Problem

Since its theoretical inception in the 1980s, quantum computing has been touted as the next great leap in information technology. […]

The Deep History Of The Caucasus Is Beginning To Be Revealed Through Genetic Sequencing

Svaneti, a rugged highland region of northwestern Georgia, lies along one of the few ancient transit routes between the South […]

Increasing Pressures On The Alpine Ecosystem Along The Qinghai-Tibet Railway In Tibet

The central Qinghai-Tibet Plateau (QTP), from Geermu (Golmud) in the Qinghai Province to Lhasa in the Tibet Autonomous Region, features […]

Innovative Architecture Sets The Standard For Scaling Up Supercapacitive Energy Storage Devices

“Economy of size is important; it allows economies of energy. Nature does it through evolution and adaptation – human ingenuity […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?