Developing The Next Generation High-Performance Lithium-Sulfur Batteries

With the fast development and wide application of portable electronic devices and green electric vehicles, the demands of a high energy-storage system are increasing gradually. Among various chemical energy-storage technology, lithium-sulfur (Li-S) batteries have been one of the most promising next-generation candidates, owing to many conspicuous merits including high theoretical capacity (1675 mAh g-1), inexpensive sulfur, and environmental friendliness.

Unfortunately, many obstacles such as inherent insulativity of sulfur, shuttle effect of polysulfides, especially low content and low loading of active sulfur still hinder the practical application of Li-S batteries. In this regard, self-supported sulfur cathodes without any binder and Al foil current collector have attracted considerable interest in Li-S batteries.

Recently, Ph.D Mingwu Xiang, Prof. Hao Wu, Prof. Heng Liu and Prof. Yun Zhang team at the Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, China, constructed a novel 3D flexible multifunctional hybrid that consists of in-situ N-doped carbon foam@carbon nanotubes decorated with magnesium oxide nanoparticles (CF@CNTs/MgO) via a facile liquid phase immersion/adsorption method combined with the pyrolysis of commercial melamine foam. This hybrid can be used as an advanced carbon matrix for high sulfur areal loading of 14.4 mg cm-2 (78 wt% in sulfur content) due to these following merits.

Firstly, the hybrid has superior flexibility and abundant internal void that is directly served as the freestanding electrode and alleviate the volume change of sulfur during cycling.

Secondly, the dense CNTs coating layers on the carbon skeletons not only allow an interconnected 3D conductive network to boost electronic/ionic transport but also offer sufficient active sites to guarantee more sulfur loading.

Thirdly, the homogeneous decoration of MgO nanoparticles throughout the hybrid and the in-situ N-doping in carbon skeleton enable the unique trapping capability of polysulfide species while alleviating the notorious shuttling effect. Finally, the fabrication of the corresponding CF@CNTs/MgO-based sulfur cathode (CF@CNTs/MgO-S) is also extremely facile and efficient, especially regarding the easy control over the sulfur loading. When used as a cathode for Li-S batteries, the best long-life span cycling performance with an extremely low decay rate of 0.06% up to 800 cycles at 2 C is obtained.

Importantly, when the sulfur loading and sulfur content are elevated to 14.4 mg cm-2, the CF@CNTs/MgO-S electrode manifests a high initial areal capacity of 10.4 mAh cm-2, and still retains a high gravimetric capacity of 612 mAh g-1 and areal capacity of 8.8 mAh cm-2 after 50 cycles at 0.05 C, which is almost twice higher than that of commercial lithium-ion batteries.

The use of a flexible soft-packaged Li-S battery is easily and readily assembled. This highlights the stable electrochemical characteristics under both bending and folding. The as-built CF@CNTs/MgO hybrid architecture has great potential as electrode materials for next-generation Li-S batteries.

This study, A Flexible 3D Multifunctional MgO-Decorated Carbon Foam@CNTs Hybrid as Self-Supported Cathode for High-Performance Lithium-Sulfur Batteries was recently published in the journal Advanced Functional Materials.

About The Author

Heng Liu

Heng is a research scientist at Sichuan University.

Speak Your Mind!


Increasing Pressures On The Alpine Ecosystem Along The Qinghai-Tibet Railway In Tibet

The central Qinghai-Tibet Plateau (QTP), from Geermu (Golmud) in the Qinghai Province to Lhasa in the Tibet Autonomous Region, features important engineering infrastructures, including the Qinghai-Tibet Railway (QTR), the Qinghai-Tibet Highway (QTH), a petroleum pipeline, a high-voltage electric power transmission line, and a fiberoptic cable. The infrastructure is known as a critical engineering and transportation […]

Determining Optimal Delivered Hydrogen Pressure

Researchers at Oak Ridge National Laboratory (ORNL), in collaboration with Argonne National Laboratory (ANL), Chevron Corporation, and Ford Motor Company, have developed a model to help deploy hydrogen refueling stations for fuel cell electric vehicles (FCEVs) more effectively. Fuel cell electric vehicles are an emerging technology that has the potential to increase our energy security […]

Construction Of An Ultrafast Broadband Infrared Pump For Spectroscopy Measurements

Over the past few decades, time-resolved ultrafast spectroscopy measurements have emerged as new frontiers of condensed matter physics via manipulating and detecting different orders of quantum materials. By combining some traditional experimental techniques with ultrafast pulse lasers, such as angle-resolved photoemission spectroscopy (ARPES), X-ray diffraction (XRD) and optical spectroscopy, ultrafast pump-probe experiments can provide new […]

Nuclear Energy Pros And Cons

Nuclear energy pros and cons can be separated into the non-greenhouse gas emitter, consistent supply of energy, and low operating cost for nuclear energy pros compared to potentially highly environmentally damaging, high startup cost, and radioactive waste disposal for nuclear energy cons. Few energy sources are as controversial as nuclear power. In fact, many people […]

Teaching T Cells Where To Go: Immune-Derived Acetylcholine Facilitates Migration Into Infected Tissues

Most people think of acetylcholine as a neurotransmitter, a substance that is produced by nerve cells to relay signals between nerves as well as from nerves to muscle cells. In the brain, acetylcholine is linked to learning and attention. Recently, we have found that acetylcholine produced by certain immune cells allows them to migrate into […]

The Interpersonal Side Of Intellectual Humility

Did you smile the first time you heard Garrison Keillor talk about Lake Wobegon, the Minnesota town “where all the women are strong, all the men are good-looking, and all the children are above average?” Social psychologist David Myers seized on Keillor’s homespun slogan to provide a catchy name — the Lake Wobegon Effect — […]

Studying Negative Experiences During Meditation

More than 25% of people who regularly meditate have had a “particularly unpleasant” psychological experience including feelings of anxiety and distorted thoughts. The new University College London-led study, published in PLOS ONE, surveyed over 1,200 regular meditators with at least two months of meditation experience. Although most scientific investigations have previously been interested in understanding […]