ADVERTISEMENT

Electrochemical Additive Manufacturing: A Low Cost Desktop 3D Printer

Additive manufacturing, or 3D printing as it is commonly known, enables the creation of complex 3D geometries through the selective layer-by-layer deposition of material. The versatility of 3D printing as a manufacturing process removes the need for specific tooling allowing the process to have significantly reduced production times compared to traditional subtractive manufacturing processes such as milling or turning. Its uses are expanding on a daily basis but has found application in aerospace, medical and motorsports applications.

The term 3D printing covers a wide range of different processes and materials from fused deposition modeling (FDM) printing for thermoplastic polymers to direct metal laser sintering (DMLS) for engineering metals. Whilst thermoplastic FDM printers have enabled consumers to access the technology due to the low cost, metal 3D printing has to date been out of reach due to the high capital cost of the equipment, the need for gases such as Argon and the safety concerns around flammable metal powders.

ADVERTISEMENT

In our recent work, “A low cost desktop electrochemical metal 3D printer” published in the Advanced Materials Technologies journal we demonstrate a new form of 3D printing called Electrochemical Additive Manufacturing (ECAM). Traditional 3D printing processes solidify material through either melting the material or using UV light to crosslink monomer solutions. The challenges with these techniques in the case of metals are that high temperature are required and UV initiated crosslinking is only applicable in polymers.

The ECAM technique uses the electroplating process which is commonly used in applications such as gold plating jewelry or copper plating coins. Here, metal ions in a solution, for example, Cu2+ ions in copper sulfate, are reduced into their elemental components through the application of an external potential. In our electrochemical 3D printer the ionic solution is loaded into a syringe and a meniscus is formed between a nozzle and conductive plate. A potential is then applied to deposit the metal and the print head is moved. This process is continued till a 3D object is created.

Asides from the low-cost nature of the printer, this process can be subtractive as well as additive, i.e. if the potential was reversed the metal would go back into solution, opening up the possibility for material recycling. Furthermore, with multiple print heads, multi-metal 3D printing can be enabled.

ECAM, therefore has the potential to open up new design possibilities and be a distributive future manufacturing method.

ADVERTISEMENT

This study, A Low Cost Desktop Electrochemical Metal 3D Printer was recently published in the journal Advanced Materials Technologies.

Comments

READ THIS NEXT

Cardiovascular Risk In Children With Hereditary Rickets

X-linked hypophosphatemia (XLH) is the most prevalent form of hereditary rickets. It is caused by loss-of-function mutations in the phosphate-regulating […]

Public Understanding Of Energy As A Need And Basic Right In Great Britain

The United Kingdom (UK) faces dramatic changes in the energy system in order to address a variety of challenges, ranging […]

How Many Teeth Do Sharks Really Have?

As you might have guessed, the number of teeth a shark has depends on the kind of shark. There are […]

Smoking Pot Does Not Make You Stupid (Birdbrained)

Common beliefs say smoking pot may lower your IQ. A study in twins now contradicts this: Intelligence is suffering from […]

Global Adaptation Governance: Why It’s Weak In Precision And Obligation

In Paris in December 2015, states established a new ‘global goal on adaptation’ at the United Nations Framework Convention on […]

A Biodegradable Piezoelectric Polymer For Vibration Energy Harvesting Applications

Following the development of portable electronics, the requirement for self-powered electronic devices has emerged as one of the hottest scientific […]

SP3 Is Key To Understanding How TNF-α Is Made: Harnessing That Power To Kill Cancer Cells

The secreted immune factor, Tumor necrosis factor alpha (TNF-α), is an important inflammatory mediator that helps neutralize and destroy infectious […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?