Using Zebrafish to Study Microbiota of the Gut

An explosion of research in recent years has brought to light the multitude of ways in which the gut microbiota influences animal health and development. The gut microbiota is incredibly diverse, comprising hundreds of species, and varies both across and within individuals over time. While scientists can identify who is present in the microbiota, how and/or why particular microbes are present is largely unknown. In particular, it is not clear how microbes adapt to their hosts, nor is it known what microbial traits are important for host colonization.

Evolutionary adaptation is a process by which organisms become better suited to a particular environment or condition. In short, individuals in populations naturally vary in their traits, and these traits can sometimes be advantageousĀ­ ā€” those individuals are more likely to survive and reproduce. With every generation, these lineages expand, increasing the overall success of the evolving population. Due to the generally large population sizes and short generation times of bacteria, adaptation can occur very quickly. So quickly, in fact, that we can use evolution as a tool in the laboratory to observe adaptation in real time and identify which bacterial traits are advantageous under particular conditions.

Animal models allow us to study and manipulate host-microbe systems that we couldnā€™t otherwise control in natural settings. The zebrafish is a great example of such a model. These animals can be raised in the absence of microbes, allowing the researcher to expose the animals to only particular microbial symbionts of interest, and track them throughout the colonization process. Moreover, the zebrafish model system captures important ecological features of natural host-microbe systems. For example, the aquatic environment of the fish serves as a medium through which microbes can move from fish to fish. In addition, because fish produce many progeny, we can easily rear them in large groups, simulating natural populations of animals.

We experimentally evolved a bacterial strain (a common microbe from fish known as Aeromonas) to optimize its ability to colonize the gut of the larval fish. To do this, we used ā€œserial passage,ā€ a technique that involves inoculating groups of fish with microbes derived from previous groups. Only Aeromonas populations present in the intestines of the fish were used to inoculate new groups of zebrafish. After each inoculation, the microbes increased in number and occasionally mutants arose that were better at colonizing the larval fish. These mutants were then passed on to the next generation of fish, thereby enriching for natural variants that are good at colonizing the gut (Figure 1).

Figure 1. Schematic of experimental evolution of Aeromonas to the zebrafish gut. Aeromonas was serially passaged in larval zebrafish, each time selecting only gut-associated Aeromonas populations to inoculate the next group of fish. Here, only two passages are depicted, but in our actual experiments, there were 22 passages. The blue Aeromonas represent a natural variant that has a trait that is advantageous for gut colonization. With each passage, it expands within the evolving population. The goal of the project was to characterize the adaptive traits of the evolved isolates. Note: zebrafish and bacteria are not to scale. Image courtesy Cathy Robinson.

Next, we asked HOW these variants were better at colonizing the gut. Generally, itā€™s assumed that microbes adapt to animal guts by acquiring traits that impact their growth or persistence specifically within the gut. Surprisingly, we found that the first variants of Aeromonas enriched in our experiment did not have gut-specific adaptations, but instead acquired the ability to immigrate into the fish from the aquatic environment more quickly than the ancestral strain. This provides an advantage both for initial colonization and also throughout colonization as space becomes available. Because they are able to get to the fish gut faster and begin growing, they become a larger proportion of the final gut population. It was only later in the experiment that we observed variants with gut-specific adaptations. In essence, we found that Aeromonas first evolved to more efficiently get into the host, and secondarily adapted to the conditions within the host.

This work provides insight into the adaptive strategies of animal gut microbes. It also contributes to a growing body of evidence supporting the role of transmission in shaping host-associated microbial communities. Finally, it demonstrates that host-microbe systems should be studied with a keen consideration of the broader ecological context inherent in these complex ecosystems. Better understanding what controls the membership of gut microbiota will one day help us develop approaches to treat or prevent microbiota-associated diseases.

These findings are described in the article entitled Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration, recently published in the journal PLOS Biology.

About The Author

Cathy Robinson

Cathy Robinson is a research scientist at the University of Oregon's Institute of Molecular Biology.

 

Speak Your Mind!

READ THIS NEXT

Effects Of Variable Eccentricity On The Climate Of An Earth-Like World

Jupiter plays an important role in the orbital dynamics of many celestial bodies in the solar system especially for Mars whose axial tilt varies over 45 degrees on timescales of 100,000s of years and whose eccentricity varies on similar timescales. Obviously, Marsā€™ climate is greatly influenced by these changes. Jupiterā€™s influence on Earthā€™s axial tilt […]

Tuberculosis Prison Break: When Bailing Escapees Favors Their Final Capture

Tuberculosis is one of the most severe infectious diseases in the world, responsible for more than 1.5 million deaths every year (1). The cause of this disease is the lung infection generated by the bacterium Mycobacterium tuberculosis (Mtb), which escapes the confinement created by our immune system to replicate and disseminate. A recent study from […]

Only One Type Of Science: European Scientists Denounce Use Of Homeopathy

Advances in medical science are being made all the time, just recently scientists managed to develop a treatment for HIV that successfully destroys 99% of HIV strains, and scientists are also investigating the possibility of a vaccine to treat tooth decay.Ā Unfortunately, the scientific community is constantly on guard against dangerous forms of “alternative medicine”. As […]

Conservative Ideology, Racial Resentment, & President Trump – An Interview With Dr. Hans Noel

At a time of political divisiveness and ideological battles, President Trump’s approval ratings have continued to decline since taking office. It is readily apparent the United States is in a political and ideological transition, yet too few discussions on the underlying forces influencing these changes. Here we discuss the state of American ideology, how this […]

Bioenergy From Willow Can Help Sweden Become Independent Of Fossil Fuels

The Swedish government has decided that Sweden shall be one of the worldā€™s first fossil-free welfare nations. By 2045, no net greenhouse gas (GHG) emissions are to be emitted to the atmosphere, and, by 2030, the vehicle fleet shall be independent of fossil fuels. Bioenergy is considered critical in reaching these goals. Currently supplying ca. […]

Breaking Bad: IgG4 In Autoimmunity

The human immune system is a complex network of cells and soluble factors that can cleverly adapt to combat infection.Ā  For example, B cells rearrange and mutate their own DNA to create a vast repertoire of antibodies capable of binding to and destroying virtually any target. During B cell development, the antibody-coding genes are shuffled […]

Circuit QED Controlled To Implement Quantum Computers

Quantum computers spare no efforts to offer the superior promise of performing complex and unimaginable problems, which are far beyond the reach of any classical computers known at present, in a reasonable time with high accuracy. The new approach for computing, based on the central principals of quantum mechanics, could have enormous applications, and may […]