ADVERTISEMENT

The Use Of Metamaterials For New Information Systems

Metamaterial has gradually cemented its place in the past 20 years as an area of exciting research and drawn broad attention from the physics and engineering communities, owing to its exotic electromagnetic (EM) behaviors. However, metamaterials have conventionally been described by effective medium parameters and governed by physical principles. They can be compared to, in a sense, analog circuits from the circuit perspective, which obviously have some drawbacks such as worse noise-resistant performance, lower signal precision, and sophisticated design.

Digital circuits, on the contrary, take only two levels of signal and are insensitive to background noise, thus could process and deliver signals without loss of the precision. To realize a digital version of metamaterials, Prof. Tie Jun Cui and co-workers at Southeast University, China, proposed concepts of coding and programmable metamaterials in 2014, which could manipulate the EM waves through pre-designed digital coding sequences.

ADVERTISEMENT

With digital coding metamaterials, engineers no longer need to care the complicated physics behind the complex array structures, but simply design the functionality with a series of binary numbers based on logic operations. The functionality of a given coding pattern holds valid for any type of coding particles, any operational frequency spectra, and even any different kinds of waves (e.g., EM wave and acoustic wave). This is similar to the digital circuit design, where researchers only focus on the code design using hardware description languages (VHDL, verilog) but do not need to worry about what type of semiconductor technology should be used to realize the constituent logic gate.

In addition to the exotic functionalities of coding metamaterials such as beam splitting, beam redirection, random diffusion, with or without polarization-dependent and frequency- dependent behaviors, the digital quantization of coding metamaterials allows us to study them from the information perspective. For example, Shannon entropy, a very famous theorem in the field of digital communication, was employed to estimate the average information carried by the coding metamaterial, which is helpful in new information systems (e.g. communication, radar, and imaging). More interestingly, the convolution operation was also performed on coding metamaterials to realize unusual physical phenomena of perfect beam steering and continuous beam scanning, which can be hardly accomplished with conventional reflect/transmit array antennas.

Another obvious benefit of coding metamaterials is that we could readily design an active coding particle by biasing a pin-diode at “ON” and “OFF” states, leading to the programmable metasurface that could make real-time control of EM waves. By independently controlling the digital state of every coding particle with a field programmable gate array (FPGA), the functionality can be switched in real time by simply changing the input coding sequences. With the programmable metamaterial, one could implement many new concept systems such as single-sensor and single-frequency microwave imager which scans an object without any movements, and a reprogrammable hologram that could generate dynamically changing microwave images on the imaging plane.

It is believed that the future coding and programmable metamaterials may have more combinations with many other digital signal processing algorithms to enable more freedoms in controlling the EM waves, and should advance along the road of intelligent metamaterials featuring self-sensing, self-learning, self-adaptive, and self-decision.

ADVERTISEMENT

Please refer to review articles (Cui et al., Journal of Materials Chemistry C 5, 3644-3668, 2017; Liu et al., Advanced Optical Materials, DOI: 10.1002/adom.201700624, 2017) for details.

This study, Information Metamaterials and Metasurfaces was recently published in Journal of Materials Chemistry CConcepts, Working Principles, and Applications of Coding and Programmable Metamaterials was recently published by Tie Jun Cui and Shuo Liu in Advanced Optical Materials.

Comments (2)

  1. I think it should be mentioned that the picture at the top, of the anechoic chamber, is taken from Intellectual Ventures’ Metamaterials Commercialization Center in Washington State, USA. They have been a pioneering force in the commercialization of metamaterial applications and have spun off several companies based on the technology (Kymeta, Echodyne, and Pivotal Commware to name a few).

Comments

READ THIS NEXT

The Unity Definition In Art

The unity definition in art is the practice of combining parts of a painting to create a unified and compositionally […]

Can We Predict Who Will Respond To Brain Stimulation Treatment For Depression?

Published by Neil Bailey, Kate Hoy, and Paul Fitzgerald Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School These […]

Comparison Of Chemical Mechanisms Of Heavier Vs. Lighter Elements

Much attention has been paid to the chemistry of heavier elements in recent years. The phenomena arising from the heavier […]

Diversity Climate: How To Maximize The Positive Effects Of Workforce Diversity

Business organizations have intentionally diversified their workforce across genders, races, and ethnicities, either in response to growing legal pressures since […]

How To Predict Materials’ Lifetime For Solar Technologies

Global warming and climate change are probably the major challenges facing humanity today, which necessitates the reduction of the anthropogenic […]

Integrated Pollination Management

Today we separate the two most common ways of managing pollination services in crops. One is the use of managed […]

How Aging Reduces Neurogenesis In The Hippocampus And Increases The Risk Of Dementia

We all know that as we get older, our minds start to get a little fuzzy. For an increasing number […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?