Twinning Boundary ω-Fe Makes Carbon Martensite Hard In Steels

People have used steel over 3000 years. Steel supports our daily life, a world without steel would be a very different world. The main element in steels is iron, and iron is one of the most abundant metals in the earth’s crust, mainly in the form of various iron oxides.

ADVERTISEMENT

Iron has allotropes of α-Fe (ferrite with a body-centered cubic (bcc) crystalline structure up to 910˚C), γ-Fe (austenite with a face-centered cubic (fcc) at the temperature interval of 910˚C~ 1394˚C) and δ-Fe (bcc at 1394˚C ~ 1538˚C) at atmospheric pressure. Above that temperature of δ-Fe, iron is in a liquid state.

Pure iron (α-Fe) is not strong and hard enough to make kitchen knives and other tools for industrial applications, however, steels, particularly carbon steels (iron added with a small amount of carbon), can be hard enough to cut through pure iron as if it were mud. The scientific mystery remains unclear historically. The hardening behavior is because of the formation of martensite structure, which is stabilized by carbon atoms after martensitic transformation. Austenite structure is also a solid solution with carbon atoms, however, it can never be hard as the martensite structure in carbon steels.

In a recent paper published in Journal of Materials Science, electron diffraction analysis in transmission electron microscope has unveiled that quenched Fe-C martensite is actually composed of two crystalline phases: α-Fe (ferrite) and a metastable ω-Fe phase with a hexagonal structure.

Carbon as an interstitial atom actually stays inside a metastable ω-Fe fine particle, which is distributed on twin boundaries in martensite. Carbon atoms can stabilize the ω-Fe particles, thus, more carbon atoms result in more ω-Fe particles. Again, the ω-Fe particles and the twin boundary structure stabilize each other. In turn, a lot of twin boundaries exist inside martensite structures.

ADVERTISEMENT

Finally, the martensite structure is composed of a fine grain structure connected by twin boundaries with a high density of fine ω-Fe particles containing carbon atoms. The twinned structure with ω-Fe particles can be observed in quenched Fe-C martensite regardless of the carbon content. This unique structure is probably the main reason for martensite becoming hard after carbon addition.

Quenched martensite is hard but brittle, post-tempering is usually applied to improve the ductility for applications. Tempering will cause the martensite structure to transform into a mixture of ferrite and carbides accompanied with a disappearance of twinning structure and ω-Fe in the original martensite.

The confirmation of the ω-Fe existence in quenched Fe-C martensite has been explained by electron diffraction analysis in a recently published paper “Electron diffraction analysis of quenched Fe–C martensite” by Liu, T.W., Ping, D.H., Ohmura, T., and Ohnuma, M., in the Journal of Materials Science.

ADVERTISEMENT

Comments

READ THIS NEXT

Kind Actions Make People Feel Good Even When They Do Not Benefit

The English philosopher Thomas Hobbes was famous (infamous?) for arguing that human beings necessarily always act in their own self-interest. According […]

Microalgae: The Green Mines For Fueling The Future And Mitigating Heavy Metals

The energy crisis, water shortage, and pollution are among the major challenges confronting sustainable environmental existence. Renewable energy derived from […]

Is Parenthood Related To More Socially Conservative Attitudes?

Becoming a parent is, for many people, among the most important events in a person’s lifetime. From an evolutionary perspective, […]

Does The Arrow Of Time Apply To Quantum Systems?

Does the arrow of time still point forward even in quantum systems? A new experiment seems to imply yes, quantum […]

Study Finds Mothers With Children Age Faster Than Childless Women

A new study in the medical journal Human Reproduction includes findings that suggest that women who have had children may […]

Measuring Soil Health In Semi-Arid Environments

Ogallala aquifer, which stretches across eight states in the US, provides supplemental irrigation for agriculture and livestock production in the […]

Environmental And Climate Evolution During The Last 11,600 Years In The Western Mediterranean Region

The paleoecological study of several wetland areas in the Sierra Nevada mountains of Spain led by researchers from the Department […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?