ADVERTISEMENT

Toward The Flexible Operation Of Integrated Community Energy System: A Two-Stage Multi-Objective Scheduling Method

With the growing concerns over the energy depletion and environmental challenges around the world, increasing attention is being paid to the issues in energy conservation, energy efficiency improvement, and emission reduction.

The European Union presented its energy targets for 2030, which will attain at least a 40% reduction in greenhouse gas emissions as compared to 1990 level, and increase the utilization of renewable energy to 27% of gross energy consumption. As to the United States, the greenhouse gas emission reduction target will reach 26–28% below the 2005 level by 2025. The Chinese government has also committed to reducing its greenhouse gas emissions per unit of GDP (i.e. carbon intensity) by 40-45% at 2020.

ADVERTISEMENT

In order to realize these targets, the integrated community energy system (ICES) is attracting more and more attention in recent years, where heat, gas, and electrical energy are becoming tightly coupled at the community level. Compared with the electric system, the ICES is not only able to provide new solutions for a more secure, sustainable and economical energy utilization but also beneficial for the improvement of energy efficiency and reduction of greenhouse gas emission.

Nowadays, the concept of ICES has been applied to practice by a number of demonstration projects in many countries, e.g. the Chiloe Islands of Chile, the Ubiquitous Energy Network in Zhaoqing New District of China and the HyLink system at Totara Valley of New Zealand.

To realize the optimal operation of ICES, a two-stage multi-objective scheduling method (TMSM) for ICES is proposed, which consists of a multi-objective optimal power flow (MOPF) calculation stage and a multi-attribute decision making (MADM) stage. Various operational indices are considered to characterize the operation of ICES, among which the operation cost (OC) and total emission (TE) of ICES are selected as the objectives at the MOPF calculation stage. And all operational indices are considered during the MADM stage to determine the final day-ahead scheduling schemes from the alternative solutions obtained in MOPF.

A typical ICES is utilized to verify the effectiveness of the developed TMSM. The multi-objective day-ahead Pareto Optimal Curve are obtained by the proposed MOPF algorithm, as shown in Fig. 2. Obviously, for each time period, the OC and TE of ICES are two opposite objectives that decreasing one of them increase the other one. Meanwhile, two typical time periods, namely time period 1 and 18, are compared to demonstrate the details of results. It is observed that the proposed MOPF algorithm can provide day-ahead optimal scheduling schemes as many as possible. Furthermore, solutions that lie in the edges of the Pareto Optimal Curve represent the optimal scheduling schemes for OC and TE minimization of the ICES, respectively.

ADVERTISEMENT

According to the results, it is difficult to distinguish the best solution since these attributes are conflicting, and none of the solutions is superior in terms of the different attributes. Therefore, the MADM stage is utilized to determine the final day-ahead scheduling scheme. It is observed that by applying the MADM, the value of average utility function for solution No.71 is maximum. Consequently, No. 71 is chosen as the final day-ahead scheduling scheme for time period 1, which shows the maximum benefit for the ICES in aspects of all operational indices.

Numerical studies demonstrate that the TMSM can also provide flexibility for the operation of ICES. The determined optimum day-ahead scheduling schemes are capable of satisfying and balancing operational needs in aspects of security, economy and environmental friendliness. Furthermore, optimal scheduling scheme is provided with the maximum benefit of ICES.

These findings are described in the article entitled A Two-stage Multi-objective Scheduling Method for Integrated Community Energy System, recently published in the journal Applied Energy. This work was conducted by Wei Lin, Xiaolong Jin, Yunfei Mu, Hongjie Jia, and Xiaodan Yu from Tianjin University, Xiandong Xu from Cardiff University, and Bo Zhao from the State Grid Zhejiang Electric Power Research Institute, Hangzhou, China.

Comments

READ THIS NEXT

DNA Combing Technology: A Simple But Useful Technique

DNA combing is a simple technique which can be used for visualization of single DNA molecules by following simple steps. […]

Superhydrophobic Nanotip And Nanopore Arrays: A Practical Substrate For Surface-Enhanced Raman Spectroscopy

Surface-enhanced Raman spectroscopy (SERS) is a kind of powerful spectroscopic analytical technique which can detect the molecular arrangement, intermolecular interaction, […]

Does Awareness Of Environmental Problems Guarantee Environmental Actions? Maybe More For Those Privileged

Environmental problems such as climate change have been a major challenge facing humanity today. Most climate scientists are in consensus […]

Researching Biomarkers To Identify Autism Spectrum Disorder In Utero

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder indicated by difficulties in social interactions and communication, both verbally and non-verbally, […]

Implicating Dendritic Cells In The Pathogenesis Of Anterior Uveitis 

Uveitis is a potentially blinding condition whereby inflammation may irreversibly damage the delicate intraocular structures. It can be associated with […]

When Melancholia Adds To Breathlessness: Is There A Link Between Asthma And Depression?

Asthmatics often suffer from depression and anxiety disorders. Why that is the case has now been investigated in twins. Now […]

Microdoses Of Psychedelic Mushrooms Could Help Stimulate Creative Thought

Microdosing—taking fractional doses of psychoactive compounds—has gained popularity recently as a way to lessen anxiety and stimulate creative thought. Some […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?