Surface Stabilization Assures Safety Of Buckminster Fullerene

The discovery of nanostructured carbon material “fullerenes” has emerged as a new substitute for widely-accepted nanocarbon material like graphene in the world of nano-research. The advent of this new nanomaterial by Kroto et al. in 1985 gave it a chance to occupy major space in various applications like sensors, photovoltaics, catalysis, electronics, and so on. When laser vaporization of graphite results in the formation of 60 carbon clusters, they are termed “Buckminster fullerene,” or simply, “bucky ball.”

The uniqueness of C60 fullerene relies on its molecular organization, which is a truncated icosahedron with 12 pentagon and 20 hexagon ring structures (1). Extreme stability as a result of symmetrically-arranged carbon atoms in fullerenes makes them suitable for biomedical applications as a drug delivery agent, bioimaging probe, tissue engineering scaffolds, etc. Buckminster fullerene, or C60 fullerenes, are the most abundant and widely-used among the fullerene family. The fullerene group possesses a similar structure but with different number of carbon atoms. The major area in which fullerene receives attention in biomedical applications is the antioxidant potential that they exhibit in a biological system.

Oxidation reduction reactions as a part of mitochondrial respiration constitute the principal reactions where free radicals extensively generate and propagate inside the cell. Molecules that scavenge these highly reactive oxygen species can improve the survival rate of cells. Fullerenes with specifically arranged carbon atoms are good enough to uncouple the electron transport chain reactions that propagate inside the mitochondrial compartment. Characteristic 60 carbon arrangements also devote antimicrobial property to fullerenes via disruption of protective lipid bilayer and membrane structures of micro-organisms. Likewise, the doping of metal ions inside the bucky ball structure of fullerene is used as a contrast agent. In bioimaging, photoirradiation of fullerene-conjugates with DNA binding ability is often used as an anticancer agent (2) (Figure 1).

While considering these advantages, it is important to point out the major disadvantages of fullerene C60, like the hydrophobic nature that restricts their applicability in a biological system. Researchers overcome this problem via functionalization of fullerenes with various hydrophilic moieties on their surface (3). As a result, water-soluble fullerenes were established as a theranostic agent in osteoporosis and targeted drug/gene delivery agents in cancer treatment.

Figure 1: Biomedical application of fullerene C60. Figure courtesy Mohanan PV.

Advancement of nanotechnology research led to the development of materials with tremendous biomedical applications. However, the use of these materials as pharmaceuticals requires thorough investigation regarding their toxicity to living things and the environment. Although many studies reported the general toxicity of nanoparticles in living systems, controversies still exist about the mechanism and role of physico-chemical characteristics. The way by which most of the nanosized materials induce toxicity to a living system is through their direct interaction with the plasma membrane and associated destruction of membrane-protective units.

In another concept, if the particles are internalized into the cells via the endocytosis mechanism, they will be distributed in cytoplasm and access interaction with the cellular organelles. Some of the fine-tuned nanoparticles can cross the nuclear envelope and even induce damage to genetic materials (4). Hence, it is necessary to draw attention to the toxicological evaluation of synthesized materials and to prove their safety before using them for medical applications. The present study addresses the interaction of dextran functionalised fullerene C60 (Dex-F60) with Chinese Hamster Ovary cell lines (CHO).

The study begins with the functionalization of fullerene C60 using hydrophilic polymer: dextran and characterization of modified material using TEM imaging and FTIR analysis. Afterward, detailed toxicity profiling of Dex-F60 using CHO cells were conducted. Cellular viability in terms of mitochondrial reduction potential and lysosomal internalisation was assessed after 24h of Dex-F60 exposure with CHO cells. Generally, nanocompounds generate oxidative stress in cells as they distract the mitochondrial membrane potential and accelerate the evolution of free radicals. The present study reported increased generation of free radicals in cell cytoplasm after Dex-F60 interaction. Free-radical generation was found to depend on the concentration of Dex-F60 particles exposed to CHO cells. However, the cytoskeletal integrity as well as organelle function were not affected by Dex-F60 at the particular concentrations used for this study. The potential of Dex-F60 to impart any serious effect to nuclear counterparts was also investigated using DAPI staining and a DNA ladder assay. Flow cytometry was also conducted to check the number of live/dead cells present in the system after Dex-F60 interaction. There was no nuclear disintegration and apoptotic cell death found in the presence of Dex-F60. Major observations of the study are depicted in Figure 2.

Figure 2: Biocompatibility of Dextran functionalized fullerene C60. Figure courtesy Mohanan PV.

The entire study concluded with a notion that dextran-stabilized Fullerene C60 is a biocompatible material that can definitely gleam in the field of nano-medicine.

These findings are described in the article entitled Cytoskeletal synchronization of CHO cells with polymer functionalized fullerene C60, recently published in the journal Biointerphases (Biointerphases. 2019; 14(2):021002). The work was done by Biby ET, Prajitha N, Rajeev KS and Mohanan PV from Sree Chitra Thirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India.

About The Author

PN
Prajitha N

Prajitha N is a research scientist at the Sree Chitra Tirunal Institute for Medical Sciences and Technology.

Mohanan PV

PV is a research scientist at the Sree Chitra Tirunal Institute for Medical Sciences and Technology.

Speak Your Mind!

READ THIS NEXT

Women’s Neurology

Women’s Neurology examines neurologic disorders through a gender-based lens. There is a lack of knowledge about how sex and gender may affect neurological illnesses as much of the research in this area is emerging or not widely publicized. Gender-specific neurologic issues clearly vary at different portions of a woman’s life; these issues might include questions […]

Researchers Claim New Technique Could Make Gene Editing Safer And More Precise

A team of bioengineers at the University of Illinois have reported that they have successfully created a method of gene editing that is safer and more efficient than the widely used CRISPR-Cas9 procedure. The technique, dubbed CRISPR-SKIP by its creators, improves upon existing CRISPR technology by allowing the replacement of single bases of DNA, instead […]

Here Are The Happiest Countries In The World According To The UN

What’s the happiest place in the world? According to the newest World Happiness Report released by the UN, it’s Finland. The Republic of Finland managed to push out Norway from the top spot where it was last year. The number two spot on the list goes to Denmark, followed up by Iceland in the number […]

Age At Natural Menopause And The Risk Of Type 2 Diabetes: A Prospective Cohort Study

Menopause is a natural process that marks the end of the reproductive period in women. This major life transition happens when the ovaries no longer release an egg every month and, due to the cessation of estrogen and progesterone production, menstruation stops. The age at which menopause occurs varies greatly from woman to woman. However, […]

Internal Gravity And Binding Energy Of Comets And Asteroids

The gravitational field outside a planet, a moon, an asteroid, or a comet is crucial for determining that body’s mass, density, and some details of its internal structure, as well as possible orbits around that object. But the gravitational field inside such a body controls its internal stresses and strains, as well as its self-gravitational […]

Rethinking The Concept Of Biological Water From Numerical Simulations

Biological water is the thin layer of water molecules that, by surrounding biological systems such as, e.g., proteins, organelles, and cell membranes, affects their fluidity, phase behavior and, ultimately, proper functioning. As a counter effect, the biological molecules interact with water molecules slowing down their molecular rotations and diffusion. The dynamical properties of the bulk […]

The Role Smell Plays In Sexual Arousal

Human olfaction is fairly sophisticated and sensitive. We can most likely detect approximately one trillion different odorants compared to several million colors and a half million different tones, and we are able to detect odors at very low concentrations, (e.g., 0.2 ppb for some molecules). Further, the nature of the information provided via smell seems […]