ADVERTISEMENT

Structuring Data Sets By Defining Topological Relations: The Example Of Word Morph

Some years ago we got a request by language therapists if we could construct a computer program for patients with difficulties of word finding. The therapists had already successfully used the well-known language game “Word Morph” to increase the language abilities of their patients.

Word Morph is a game similar to “Scrabble”: Its basic rule is simply to construct new words by exchanging one letter in a “start word” and thus to generate a word chain until an also predetermined “end word” has been found. The words must, of course, consist of the same number of letters. An example of such a word chain is “break – bread – tread – trend”.

ADVERTISEMENT

An Algorithmic Solution

In order to solve this problem, we defined a word set as a “metrical space”, i.e. a set where between two words X and Y a distance relation d(X,Y) = n can be constructed; n is – in this case! – an integer. For the problem of Word Morph, we defined d(X,Y) = 1 if and only if X and Y differ in exactly one letter. For example d(break, bread) = 1. In terms of metrical topology all words Y with d(X,Y) = 1 define a so-called sphere neighborhood of X with radius r =1; “bread” hence belongs to the sphere neighborhood of “break” and “trend” to the neighborhood of “tread”.

The algorithm to construct word chains in a given word set now operates the following way: It starts from the predetermined start word X and generates the sphere neighborhood of X, i.e. it selects all words Y with d(X,Y) = 1. We call this the first order neighborhood of X. If the end word Z belongs to this first order neighborhood the algorithm stops. If Z is not an element then the algorithms constructs the neighborhoods of the words Y, i.e. set of words S with d(S, Y) = 1 and d(X,S) = 2. This generates the second order neighborhoods with respect to X. This procedure is repeated until Z has been found as an element of an nth order neighborhood of X. This gives the distance d(X,Z) = n. Because the task of the algorithm is the generating of neighborhoods we call it ANG – Algorithm for Neighborhood Generating.

ADVERTISEMENT
Picture 1 shows a graph starting with “amber” and ending with “urges”

In large word sets, it might quite be that Z cannot be reached that way. This means that the whole word set is not connected. In this case, after having constructed all possible neighborhoods ANG selects at random a word from the remaining subsets and repeats its operations. The result is a partition of the initial word set, i.e. a decomposition of the set into disjoint subsets.

In addition to the original Word Morph rule, we not only experimented with r = 2 but also introduced the possibility to construct “vertical” neighborhoods, namely adding (or subtracting) one letter. By calling the first neighborhoods “horizontal” ones we obtain for example “push” as an element of the horizontal neighborhood of “bush” and “brush” as an element of the vertical neighborhood of bush. Details and results of experimenting with these enlargements of Word Morph can be found in Klüver et al 2016.

Final Remarks

Apart from the rather serious problems the language therapists told us the dealing with Word Morph might look on a first sight as an example of a “Glass Bead Game”, to quote the famous novel of Herrmann Hesse. Yet we could show that ANG can be applied to very different practically important problems, for example, a) the selection of suited locations for offshore wind energy plants, b) the structuring of social groups, c) the construction of an Internet metasearch engine that computes the information degree of text documents, d) the ordering of medical data and e) the ordering of log files.

The basic logic is always the same, namely the definition of a metrical distance relation between two elements of a data set and the subsequent generation of according neighborhood structures. Therefore, the construction of ANG for Word Morph might be seen as a classic case of “Serendipity”: We got much more than originally intended.

ADVERTISEMENT

References

  • Klüver, J., Klüver, C. Ordering data sets by generating graph structures. In: Brito, A.C., Tavares, J.M.R.S., De Olivera, C.B. (Eds): Proceedings of the 2014 European Simulation and Modelling Conference (ESM ‘2014). Eurosis-ETI, 2014, 97 – 102
  • Klüver, J., Schmidt, J., Klüver, C., 2016: Word Morph and Topological Structures: A graph generating algorithm. In: Complexity Vol. 21, Issue S1, pp. 426 – 436. DOI:10.1002/cplx.21756

This article, with contributions from Christina Klüver and Jürgen Klüver titled Word morph and topological structures: A graph generating algorithm was recently published in the journal Complexity.

Comments

READ THIS NEXT

Aging Dolphins Via Pectoral Flipper Radiography

Unlike humans or other animal species, dolphins rarely show signs of external aging. Consequently, estimating the age of a free-ranging […]

A Smart Stochastic Model For Predicting Soil Moisture Under Changing Climate

Soil sustains life by the virtue of the nutrients and moisture it holds. Predicting the dynamics of soil moisture is […]

Hooray For Social Diversification

Multiunit systems rely on the capacity to socially interact. For example, multicellular organisms, such as ourselves, comprise differentiated tissues that […]

Weight Diversity: A Stigma-Reduction Mechanism to Reduce Weight-Based Achievement Disparities

The odds of academic success are stacked against youth with overweight and obesity. On average, youth with higher weight do […]

What Is A Palmetto Bug?

A palmetto bug is the colloquial name for the Florida woods cockroach, Eurycotis floridana. As the name would imply, the species is native to […]

What Is A Carpet Beetle (Bug)?

The carpet beetle is a colloquial name given to a number of species of beetle classified in the Desmistidae family. Found all […]

MDMA Makes Octopuses Friendlier And More Social

Despite stemming from phylogenetic lineages separated by 500 million years of evolution, octopuses and humans surprisingly have a lot in […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?