ADVERTISEMENT

Spectroscopic And Theoretical Study Of The Microstructures Of Radionuclides

With the development of nuclear power plant and industry, ‚Äúradionuclide contamination‚ÄĚ has increasingly seen worldwide attention. The study on the properties of radionuclides, especially in the natural environment can reveal more about the toxicity of radionuclides in the environment, thereby allowing people to deal with them more effectively.

The chemical species and microstructures of radionuclides at solid particle surfaces are closely associated with its transport, hazardous and bioavailability in the environment. Recently, professor Xiangke Wang from North China Electric Power University (China) reported a series of works on the interaction mechanism of radionuclides with different clay materials at a molecular level by the advanced synchrotron radiation technique and computational theoretical calculations.

ADVERTISEMENT

Wang’s group applied X-ray absorption fine structure (XAFS) spectroscopy including X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy to provide the structure information (e.g., the bond distances and coordination numbers of neighbors) of radionuclides at a molecular level. They also applied plasma- and chemical-grafted amidoxime/carbon nanofiber hybrids (p-AO/CNFs and c-AO/CNFs) to remove 238U(VI) from wastewater. The chemical species and microstructures of U(VI) at the two kinds of nanomaterials are investigated by EXAFS (Environmental Science & Technology, 2017, 51, 12274-12282). Figure 1A and 1B showed the spectroscopy information of U(VI) on the nanomaterials, these characterizations suggested that U(VI) formed strong inner-sphere surface complexes even at low pH, which is very important for the application of such nanomaterials in the removal of U(VI) from wastewater.

The removal of U(VI) onto sericite in the presence of Bacillus subtilis (B. subtilis) is also studied using EXAFS techniques (Geochimica et Cosmochimica Acta, 2016, 180: 51-65). Figure 1C and 1D also show that inner-sphere surface complexation between U(VI) and sericite + B. subtilis at pH 7.0 and pH 4.0 are ascribed to the U-Al/Si or U-C shell and U-P shell, respectively.

Figure 1. The k2-weighted U LIII-edge EXAFS spectra (A) and corresponding Fourier Transmission (FT) (B) of references and U(VI) sorption samples, CU(VI) = 10 mg/L, m/v = 0.6 g/L, I = 0.01 mol/L NaCl, T = 293 K. Uranium LIII-edge EXAFS spectra (C) and corresponding Fourier transform (D) for U(VI)-reacted sericite, B. subtilis and sericite + B. subtilis at pH 4.0 and 7.0 under atmospheric conditions, CU(VI) = 6.3 őľmol/L, Csericite = 2.0 g/L, CB. subtilis = 0.5 g/L, I = 0.01 mol/L NaClO4, T = 293 K.¬†Reproduced with permission from the publisher.

Due to the limited sensitivity of the XAFS technique, it is still challenging to use it on radionuclide analysis at environmental concentrations. Furthermore, for some actinides (e.g., Am, Np, Cm, Pu), the radionuclide operation license makes it difficult to carry out the XAFS measurements. Density functional theory (DFT), one of the most powerful theoretical tools, is applied efficiently to calculate correlation energy and electronic structures. For instance, the theoretical calculation provides the differences in the interactions between CNTs with Eu(III) and 243Am(III) ions (Environmental Science & Technology, 2015, 49, 11721-11728). Figure 2 shows that the charge transfer interaction between CNTs and Eu(III) are much stronger than that of 243Am(III). This can help us to understand the difference between lanthanides and actinides on nanomaterials.

Figure 2. The difference density between the oxidized CNTs_M(III)8W and its two fragments (oxidized CNTs and M(III)8W). The violet color and yellow color represent the increase and decrease of electron density, respectively. Both of the two colors indicated that the charge transfer interaction exists. The significant increase electron density indicates the strong charge transfer interaction. Reproduced with permission from the publisher.

In order to more fully understand the transport of radionuclides in the natural environment, the combination of batch technique, theoretical calculation, and spectroscopy analysis are helpful to understand the interaction mechanisms and to safely predict the disposal of long-lived radionuclides.

ADVERTISEMENT

The interaction between U(VI) and graphene oxides (GOs) with different surface properties are studied by the combination of EXAFS technique and DFT calculations (Environmental Science & Technology, 2015, 49, 4255-4262). Based on the EXAFS analysis (Figure 3A), the sorption of U(VI) on GOs with different surface functional groups are different, which is also evidenced by the theoretical calculations (Figure 3B).

Figure 3. (A) The k2-weighted U LIII-edge EXAFS spectra (left) and the corresponding Fourier Transforms (right) of the reference and samples before and after desorption, m/V = 0.25 g/L, C U(VI) = 60.0 mg/L, I = 0.01 mol/L NaClO4, T = 293 K. (B) The DFT-optimized geometries of the rGOs_uranyl complexes and GOs_uranyl complexes. Reproduced with permission from the publisher.

The microstructures and speciation of radionuclides studied by advanced spectroscopy and theoretical calculation are crucial to understanding the physicochemical properties of radionuclides in the natural environment.

These findings are described in the article entitled Microstructures and speciation of radionuclides in natural environment studied by advanced spectroscopy and theoretical calculation, published in the journal Science China Chemistry. This work was led by Xiangke Wang from North China Electric Power University.

Comments

READ THIS NEXT

Analogous Structures: Definition And Examples

Analogous structures are structures which serve similar purposes yet are found in species that have come from different evolutionary lines. […]

What Is Behind Mars’ Stunted Growth?

Explaining why Mars is so much smaller and accreted far quicker than the Earth is a long-standing problem in planetary […]

The Density Of Metals

The density of metals ranges from¬†Osmium at the highest density to lithium at the lowest density of any metal. Knowing […]

Wireless Sweat Monitoring Could Make The Self-Tracking Of Chronic Diseases Easier

Traditional checks for chronic diseases, such as diabetes, often involve analysis via blood samples and require trained medical staff. However, […]

Feeding Electricity To Bacteria

Can electricity serve as an alternative electron supplier for bacterial growth? And can we enhance the electron uptake capacity of […]

Graphene Improves The Efficiency Of Semiconductor Solar Water Splitting

Lighting our towns and cities, the vehicles we drive, and even charging and powering electronic devices all depend on energy […]

Biased And Crossmap Dropout Strategies For Convolutional Neural Networks

Over the last decade, deep learning models, particularly Convolutional Neural Networks (CNN), have shown outstanding results in various fields, including […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?