ADVERTISEMENT

Soil Carbon And Nutrient Dynamics Following Cessation Of Anthropogenic Disturbances In Degraded Subtropical Forests

Soil carbon (C) and nutrients are fundamental to forest biodiversity and function. Forest degradation has led to the reduction in soil C and nutrients in global forests, particularly in a tropical biome where human population density is high. Ecological restoration of degraded forests can increase soil C and nitrogen (N), but the dynamics of plant essential nutrients such as phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) in soil following restoration, however, are largely unknown.

In a recent paper published in Land Degradation & Development (Feng et al. 2017), researchers from Anhui Agricultural University in China and Lakehead University in Canada studied how soil pH, bulk density, organic matter, water content, C stock and C, N, P, K, Ca, and Mg concentrations changed over time following the cessation of anthropogenic disturbances in subtropical forests in China. They also examined how the stoichiometric (mass concentration) ratios of C vs. nutrients and N vs. P respond over time following the cessation of anthropogenic disturbances.

ADVERTISEMENT

The study found that stand basal area, soil water content, organic matter content, and C concentration and stock increased, while soil pH and bulk density decreased over time, with the most pronounced effects in topsoil layer. Total and available N and K, as well as available P and total Mg, increased, but total P in the 20-30 cm layer and Ca in all soil layers decreased over time. The mass concentration ratios of soil C to total N and available N, P, and K decreased, whereas those for C to total P and Ca as well as total N to total P and available N to available P increased over time.

The findings of the study indicate that C and biologically driven nutrients increase, and geochemically driven nutrients in soil decrease, while plant biomass accumulates following restoration. This study suggests that ecological restoration through the cessation of anthropogenic disturbances in degraded mountain forests increase ecological functions and prevent soil nutrient loss.

The study,Ā Soil Carbon and Nutrient Dynamics Following Cessation of Anthropogenic Disturbances in Degraded Subtropical Forests was recently published in the journalĀ Land Degradation & Development.

ADVERTISEMENT

Comment (1)

Comments

READ THIS NEXT

On Dynamics Of Sine-gordon Soliton Under External Forcing

Solitons are pulsed like waves that propagate and collide with each other without losing their speed, shape or amplitude. This […]

Wildlife Guides Stumble Upon Rare White Lion in South Africa

Lions are rather majestic creatures that roam the wilds of Africa,Ā Asia, and zoos. White lions are an even more captivating […]

Nanoscale Multifunctional Tubular Networks

Block polymers can self-assemble into an ever-increasing variety of nanoscale-sized periodic patterns. The simplest block polymer is an A/B diblock […]

What Is A Nonpolar Covalent Bond?

Nonpolar covalent bonds are bonds where both atoms possess the same electronegativity, and therefore the electrons in the electron bond […]

Reconstructing Physical Activity In The Past Using Hand Bone Entheses

The effect of habitual physical activity on the human body is a fundamental research topic in bioarchaeology as well as […]

India And Bhutan As A Model For Inter- And Intra-Regional Energy Trade

Collaboration among the countries in South Asia for inter- and intra-regional energy trade has been identified as the most cost-effective […]

A New Cost-Effective Deployment Strategy For Satellite Constellations

Published by Hang Woon Lee and Koki Ho Department of Aerospace Engineering, University of Illinois at Urbana-Champaign These findings are […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?