ADVERTISEMENT

Self-powered Paper-based Diagnostics At The Point Of Care Testing

Providing high-quality medical diagnostics in low-resource settings, such as forward-deployed military units, rural areas in Africa, or in the middle of natural disaster scenarios, requires portable laboratories that should be affordable, easy to transport, easy to use (even by minimally trained users), and independent of infrastructure.

While a variety of portable solutions have been proposed to diagnose some of these health problems and infectious diseases, their dependence on cumbersome/expensive equipment, refrigeration conditions, and skilled personnel prevents their adoption by first responders and healthcare personnel who require accurate and quantitative results in resource-limited settings. Without a rapid, deployable, and field-sustainable diagnostic tool, healthcare workers in low-resource areas and natural disaster sites are forced to make their decisions based on observed symptoms, which, usually begin 4-6 days after infection and are often mild and can be easily mistaken for those of flu or other viral infections.

ADVERTISEMENT

The FlexiLab, research group lead by Prof. Ramses Martinez at Purdue University, used cellulose paper, rendered superhydrophobic using spray coating, to fabricate self-powered, paper-based, electrochemical devices (SPEDs) capable of performing accurate medical tests at the point of care. SPEDs have two functional layers: A top layer containing self-pipetting microfluidic channels distribute urine or blood samples over the electrochemical and colorimetric test zones (see Figure 1).

Figure 1: Electrochemical and colorimetric tests. Credit: Ramses V. Martinez

The bottom layer of the SPEDs is a paper-based triboelectric generator capable to harvest electric energy from the charges at the fingertips of the user. To perform an electrochemical test using SPEDs, the user needs to connect them to an inexpensive small portable circuit called ‚Äúpotentiostat‚ÄĚ (see Figure 2), tap the back of the SPED for about 3¬†minutes so the triboelectric generator can charge the rechargeable battery of the potentiostat, and apply a fingerprint of blood on the top layer of the SPED that will serve as a sample for the medical diagnostic test.

Figure 2: Potentiostat. Credit: Ramses V. Martinez

The paper-based tribogenerators integrated into SPEDs were able to not only provide enough energy to run electrochemical tests but also re-charge small batteries, which could be used in parallel to recharge a cellphone. This provided the first example of how self-powered, paper-based electrochemical devices could be used to facilitate telemedicine applications, using a machine-vision algorithm capable to identify the shape and orientation of colorimetric tests in a digital image, to apply an adaptive color image filter to minimize color artifacts from illumination conditions and to interpret the results of the tests (see Figure 3). After the SPEDs are used to perform up to 4 electrochemical tests and 10 colorimetric assays, they can be easily disposed of by burning (see Figure 4).

Figure 3: Colorimetric test results. Credit: Ramses V. Martinez

SPEDs proved to be capable of detecting and measuring different analytes such as glucose, uric acid and L-lactate in blood; pH, ketone, hemoglobin, white blood cells, etc. in urine. These biomarkers correspond to the detection and monitoring of diseases related to liver and kidney function, malnutrition and anemia. Future work envisages the detection and monitoring of biomarkers for infectious diseases in remote areas such as HIV, dengue fever, yellow fever, malaria, and hepatitis.

ADVERTISEMENT

This study, Self-Powered, Paper-Based Electrochemical Devices for Sensitive Point-of-Care Testing was recently published in the journal Advanced Materials Technologies.

Comments

READ THIS NEXT

Environmental And Climate Evolution During The Last 11,600 Years In The Western Mediterranean Region

The paleoecological study of several wetland areas in the Sierra Nevada mountains of Spain led by researchers from the Department […]

Canaries In A Coal Mine: Best-Indicator Species For Detecting Abrupt Community Shifts

One central question in biodiversity conservation is to identify the risk of species extinction. What is the probability of a […]

What Is Black Tourmaline?

Black tourmaline is a particular variant of tourmaline, a crystalline borosilicate mineral. It is thought that the particular hue of […]

Implication Of Global Warming On Electricity Demand In Australia

The increase in temperatures as a result of global warming has serious implications for electricity demand. Global warming, which is […]

Phenotypic Plasticity Of Morphoanatomical Features Facilitate The Invasion Of Alligator Weed

Alligator weed (Alternanthera philoxeroides, Amaranthaceae) is one of the more famous invasion plants in the world, colonizing in aquatic and […]

Aggressiveness ‚ÄĒ A Trait With Many Meanings

What is aggressiveness? When we try to imagine an aggressive person, some of us would imagine a person who initiates […]

How Public Opinion Affects Air Quality: A Chinese Case Study

China has achieved notable economic development in recent decades. However, such achievement comes with serious environmental and social costs. The […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?