Rethinking The Concept Of Biological Water From Numerical Simulations

Biological water is the thin layer of water molecules that, by surrounding biological systems such as, e.g., proteins, organelles, and cell membranes, affects their fluidity, phase behavior and, ultimately, proper functioning. As a counter effect, the biological molecules interact with water molecules slowing down their molecular rotations and diffusion.

The dynamical properties of the bulk water are recovered beyond the thin hydration shell, i.e., at a distance of around 1.5 nm away from the biological molecules. Because of this interconnected effect, it is still not clear if water affects the biological entities or vice versa.


In our study, we have simulated the interaction of liquid water with a biological membrane modeled by a phospholipid bilayer.

Biological membranes provide a limiting structure that separates the interior and exterior of cells and organelles. Being selectively permeable, membranes control the flow of substances in and out of the cell, which permits the regulation of the cell composition and communication between cells through signaling. Membranes are also involved in the capture and release of energy.

Biological membranes are composed of many biomolecules, including proteins, sugars, cholesterol, and phospholipids. Among these components, phospholipids provide structure to biological membranes. This is due to their spontaneous self-assembly, arising from the hydrophobic effect and resulting in the formation of bilayers. For this reason, phospholipid membranes are used as models to investigate the fundamental properties of biological membranes, both experimentally and theoretically.

We have initially quantified the degree of dynamical slow down of water molecules. We have shown that approaching the phospholipid surface, the water molecules rotate and diffuse at a pace comparable with bulk liquid water at deeply undercooled conditions, i.e., at 240 K.


We have then probed structural properties of water molecules using a new, sensitive order metric developed by some of the authors. We have demonstrated that phospholipid membranes have an effect on the structure of the surrounding water that propagates well beyond the thin layer of biological water (at least 2.5 times further), much further than previously hypothesized.

This intriguing result could help the scientific community to rethink the concept of biological water to better understand the role of water in biological systems. We are currently simulating other systems in order to understand if the same effect we observe in this article occurs also with other biological systems.

These findings are described in the article entitled Structural properties of water confined by phospholipid membranes, published in the journal Frontiers of Physics. This work was led by Fausto Martelli from Princeton University.



A New Twisting Somersault

The twisting somersault is a visually stunning acrobatic maneuver featured in numerous Olympic sports, such as platform and springboard diving, […]

Temperature Has A Significant Influence On The Production Of SMP-Based Dissolved Organic Nitrogen (DON) During Biological Processes

Traditionally, activated sludge has been the most commonly used biological process for municipal wastewater treatment. Soluble microbial products (SMPs) formed […]

Antioxidant Treatment To Block Lung Inflammation Caused By Cigarette Smoke

Smoking is a harmful addiction responsible for several lung pathologies caused by toxicity of the cigarette smoke. One of them […]

Overweight: Growing Influence Of Genes With Aging

Researchers have shown that the influence of genes changes during the first years of life. In childhood, there are other […]

What Is Chemical Weathering? With Examples

Weathering is the process by which rocks, minerals, wood, and many other natural or artificial things break down because of the natural […]

A Look At The Solar Radiation Climate In Athens During The Brightening Period

Solar radiation at the Earth’s surface (SSR) is the primary source for life, as it controls various fields such as […]

NH3 (Ammonia) Molar Mass And Chemical Properties

Ammonia is a chemical compound that has the formula NH3, being made out of one nitrogen atom and three hydrogen […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?