Organ System: Definition And Examples

In biology, an organ system refers to a group of one or more organs arranged in a particular way that work together to perform some physiological function. The term “organ” refers to specialized collections of biological tissue that perform similar functions. Thus, an organ system can be considered any interacting network of specialized tissues that work together to perform a specific function.

According to the classical theory of biological organization, organ systems occupy the second highest level of the organizational hierarchy, above that of the individual organs and below that of the whole organism.

Generally when one hears the term “organ,” one thinks primarily of the internal organs made out of fleshy smooth muscle that reside in the central abdominal cavity: things like the heart, lungs, liver, spleen, etc. Actually, the term “organ” refers to any specialized tissue that serves a particular function, so things like skin, muscles, and the skeleton count as organs that are part of organ systems. To be clear, an organ system is not just any collection of organs, but a collection of organs that are arranged a certain way to perform a certain function. Animals like humans have a number of different organ systems that each perform a function vital to life, such as the respiratory system, the circulatory system, and the nervous system. Plants too have organ systems, composed out of their roots, leaves, stamen, and seeds.

Examples Of Organ Systems

Circulatory System

The most obvious example of an organ system is the heart and the surrounding circulatory system. The circulatory system functions primarily to circulate blood to the various parts of the body. The primary components of the circulatory system are the heart, blood, and blood vessels such as arteries, veins, and capillaries. Humans have a closed circulatory system, meaning that their blood never leaves its network vessels, unlike the circulatory system of insects or mollusks. Through the pumping motion of the heart and vasoconstriction, blood is circulated from the lungs where it is oxygenated, to the various parts of the body where it is deoxygenated via diffusion, and back to the lungs where it is reoxygenated to start the process over again.

In addition to providing oxygen to the body, the circulatory system works as a sort of highway for hormones and other messenger chemicals of the endocrine system. Also, the circulatory system serves to keep the body warm as the circulation of blood circulates heat to the body. The circulatory system is closely related to the lymphatic system, which functions to fight infection and reintegrate plasma into blood.

Respiratory System

The respiratory system refers to the collection of organs that facilitate gas exchange in animals and plants. In humans and most other mammals, the main constituents of the respiratory system are the lungs, trachea, bronchi, diaphragm, and alveoli. When the diaphragm contracts, the chest cavity expands causing the pressure inside the empty lungs to change. Air from outside rushes down the trachea to equalizes the thoracic pressure and is pulled into the lungs. Once in the lungs, inhaled air enters the alveoli, tiny sacs made of thin membranes surrounded by capillaries of the circulatory system. Oxygen in the inhaled air diffuses across the alveolar membrane into the capillaries of the circulatory system and into the blood. Carbon dioxide from the blood also diffuses into the air in the lungs. Then, the diaphragm is relaxed and the deoxygenated air is exhaled out of the lungs as the thoracic cavity contracts.

In plants, the main organs of the respiratory system are its leaves. On every leaf are tiny pores known as stomata that facilitate carbon dioxide exchange. Carbon dioxide from the atmosphere enters the plant through the stomata and is the main ingredient, along with sunlight,  in the process of photosynthesis. The plant then expels the waste product oxygen out of the same stomata.

Digestive System

The digestive system serves mainly to break down consumed food into nutrients for the body to absorb. The main organs implicated in the digestive system are the esophagus, stomach, small intestine, and large intestine. The process of digestion actually starts as soon as you put food into your mouth. The combination of chewing and saliva break down the food enough to be swallowed down the esophagus. Rhythmic contractions of the esophageal lining (known as “peristalsis”) transport food into the stomach, where it is exposed to numerous digestive acids. Mucus produces by stomach cells protect the inside of the stomach from gastric acids strong enough to dissolve stainless steel blades.

Once food has been processed in the stomach, it moves through the duodenum to the small intestines. While in the small intestine, the majority of nutrient absorption occurs. Tiny finger-like filaments on the inside of the intestinal wall called villi draw nutrients out of the digested food and the continued peristalsis pushes food further down the GI tract. Next, the digested material enters the large intestine where any water is absorbed and the remaining material is stored as feces which is later expelled through the rectum. The digestive system is the single longest organ system in the body as the small intestine alone is between 6-7 meters long; slightly longer than three average adult humans.

There are a number of other organ systems found in humans such as the skeletal system meant for providing internal structure, the musculature system for locomotion and manipulation of the environment, the nervous system meant to let the brain communicate with the rest of the body, the endocrine system which sends messenger hormones to the body telling it how to behave, the reproductive system, and the integumentary system composed of skin, hair, fat, and nails.

In actuality, most organ systems do not have clearly defined boundaries and they all operate interdependently. The lymph system is extremely closely related to the circulatory system, and the activity of the respiratory system feeds directly into the circulatory system. None of the organ systems would work if the digestive system could not get energy from nutrients in food, and the digestive system would not be able to function if the nervous system could not send electrical signals from the brain to the intestines. So, the various organs systems of the human body form a complex interconnected network and cannot operate in isolation from each other. It is only when they are integrated into a complete biological organism do the organs systems perform their main functions

About The Author

Alex Bolano

When Alex isn't nerdily stalking the internet for science news, he enjoys tabletop RPGs and making really obscure TV references. Alex has a Masters's degree from the University of Missouri-St. Louis.

Comments (2)

Speak Your Mind!

READ THIS NEXT

Using Remote Sensing To Measure Crop Growth And Management

In most East and Southeast Asia countries, mosaic crop production systems usually consist of relatively small land holdings ( < 2 ha), which are managed by individual farmers/families (Fig. 1). Diverse field water and nutrient management practices exist among spatially adjacent fields in main crop plains, due to differences in individual farmers’ preference. Seasonal strengths […]

Image Guided Photo-Excited TRAIL Synergistic Therapy

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in cancer cells without sparing toxicity to normal cells.1 However, the efficiency is greatly limited by its short half-life and wild resistance in various cancer cells. Recently, the research group of Prof. Gang Liu at Xiamen University (China) developed micellar hybrid nanoparticles (denoted as IPN) to […]

Finger Monkey: Lifespan And Characteristics

Finger Monkeys (also known as pygmy marmoset) are incredible animals native to South America and sometimes kept as pets. The average lifespan of a finger monkey is anywhere between 15-20 years. Finger monkeys in the wild tend to live shorter lives, due to predation, disease, and accidentally falling off of trees. “Finger monkey” is the […]

Using Muscle Stem Cells For Regeneration: Lessons From Anole Lizards

Despite recent advances in regenerative medicine, re-growing a lost limb is an insurmountable feat for human beings, confined for now to science fiction and comic book superheroes. For mammals, loss of appendages results in the formation of scar tissue with little to no regeneration, leaving victims of traumatic accidents or birth defects with limited options […]

Who Do Women Count As Allies In STEM?

People’s prototype for who scientists are is perhaps made most apparent in what has become a classic social science classroom experiment in which students of all ages are asked to draw a scientist. What students produce overwhelmingly is an Einstein-esque caricature: an older White male with crazy hair holding a beaker1. These drawings in many […]

U.S. Has Lifted A 3-Year Long Ban On Creating Deadly Viruses In Research Labs

A three-year-long ban on enhancing pathogens in labs to make them more deadly has been overturned, meaning that researchers can now conduct experiments that enhance how lethal certain viruses or pathogens are. The announcement was made by the National Institute of Health on December 19th, and the NIH says that while scientists can once more […]

A Closer Look At Benthic Foraminiferal Species

My fascination with teaching and research has been fostered by 15 years of graduate teaching and mentoring while I was a professor and a postdoc. My teaching career involved discussions, field sampling, and laboratory procedures to understand interactions between Benthic Foraminiferal species (Figure 1) and abiotic parameters in the interface sediment-water in a spatial and […]