Lead Iodide Nanosheets For Piezoelectric Energy Conversion And Strain Sensing

Harvesting ambient mechanical energy or sensing the mechanical signals based on nanomaterials for self-powered and flexible systems can provide potentially revolutionary advancements in energy technologies. Piezoelectric nanogenerators/sensors, which can be fabricated using nanowires with none-centrosymmetric structure (such as ZnO and GaN or polarization domains (BaTiO3, PbZrxTi1-xO3, and P(VDF-TrFE), etc.), have been widely demonstrated for applications in wearable electronics, implantable devices, wireless transmitters, etc.

Compared to one-dimensional (1D) nanowires, two-dimensional (2D) piezoelectric nanomaterials such as molybdenum sulfide (MoS2), hexagonal boron nitride (h-BN), and tungsten diselenide (WSe2) might have the morphological advantages in constructing flexible nanogenerators. Reports have shown that only monolayered MoS2 and h-BN, or a specifically stacked bilayer form of WSe2, exhibit significant piezoelectricity. However, precise fabrication of monolayers or specific bilayer 2D nanomaterials with traditional methods such as chemical vapor deposition (CVD) or recrystallization is still challenging.


Our paper reports a piezoelectric nanogenerator/strain sensor based on lead (II) iodide (PbI2) nanosheets with the shape of two-dimensional (2D) structures, of which the piezoelectricity is not affected by the number of layers. A typical 2D piezoelectric device fabricated with 3 layers PbI2 nanosheets has recorded peak values of open-circuit voltage, short-circuit current and loading power as 29.4 mV, 20 pA, and 0.12 pW, respectively, and also possess good charging and integration capabilities. Moreover, these devices can be applied as self-powered strain sensors, with high sensitivity and excellent stability.

For fabricating a 2D piezoelectric device, firstly, the high-quality PbI2 nanosheets are fabricated with a simple recrystallization method, then the formed PbI2 nanosheets are deposited upon the PET substrate and were dried by N2 gas, and finally, Au electrodes are deposited on two ends of a PbI2 nanosheet, with a gap of 10 ¬Ķm, that is, the piezoelectric devices are constructed.

Generally, the fundamental working mechanism of the 2D piezoelectric device is based on the variations of piezoelectric potential caused by changing the electrical dipoles within the PbI2 nanosheet and the Schottky contact between PbI2 nanosheet and Au electrode, which allows our 2D piezoelectric device to convert mechanical strain to electrical outputs/signals. Polarity-switching tests are also conducted to conÔ¨Ārm that the measured output signals are not the artifacts from the measurement system.

The electricity generated by our 2D piezoelectric device can be accumulated with an equivalent loop circuit. Furthermore, the electrical output is enhanced by integrating several 2D piezoelectric devices, which may extend the potential suitable applications.


Moreover, our 2D piezoelectric device can be used as a self-powered strain sensor by measuring the transferred charges and open-circuit voltages. The rough gauge factors for our strain sensor is about 10 to 25, It should be noted that the gauge factor for a graphene strain sensor is only about 2.

Our work provides new knowledge and strategy for Ô¨āexible energy harvesting or strain sensing devices based on 2D structures.

These findings are described in the article entitled Lead iodide nanosheets for piezoelectric energy conversion and strain sensing, recently published in the journal Nano Energy.

This work was conducted by Huaibing Song from the China University of Geosciences, Ilbey Karakurt, Minsong Wei, Nathaniel Liu, and Junwen Zhong from the University of California Berkeley, and Yao Chu and Liwei Lin from the University of California Berkeley and Tsinghua-Berkeley Shenzhen Institute.




Climate Change And Estuaries: C, N, and P Retention Fluxes

Estuaries serve many important functions ‚Äď they provide recreational opportunities for coastal populations, host important fisheries (including oysters, blue crabs,¬†and […]

A Third Species Of Elephant Has Been Discovered (Right In Front Of Us)

As¬†elephants continue to be hunted down and have their population experience sharp declines, it becomes increasingly important to build a […]

How The Behavior Of Fronts In Ecosystems Affects Regime Shifts

Ecosystems are constantly perturbed by both natural and human-induced disturbances, ranging from storms and fires to grazing and clear-cutting. If […]

Gold And Organic Electrodes In Emerging Portable Electronics

“Portable electronics” indicate a class of tools usually available to most people for different uses, namely credit cards, mobile devices, […]

Assessing The Success Of A Strategy To Identify The Source Of Unknown Cancers

In some cases of cancer patients, the first presentation to a health care professional can be with a lymph node […]

Does Arsenic In Drinking Water And Rice In Asia Increase The Risk Of Neural Tube Defects?

Published by Gideon Koren &¬†Yona Amitai Maccabi-Kahn Institute of Research and Innovation and Motherisk Israel Program, Tel Aviv University and¬†Bar […]

10 Physical Change Examples

In chemistry, a physical change is a change to the form or structure of a chemical compound, but not to […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?