Investigating The Effects Of Retrograde Blood Flow In Hypertension

The endothelium, which is the inner cell layer of our vessels, is heavily associated with the maintenance of cardiovascular health. In health conditions, the endothelium is responsible for the production and release of several substances, such as nitric oxide (NO) and endothelin-1, which help keep the endothelium functioning properly.

However, in the presence of inflammation and mechanical damages to the endothelium, it becomes the site for the formation of plaques of fat and immune cells. The formation of these plaques is related to bad eating habits, lack of physical activity, and genetic factors. Over the years, these plaques grow bigger, narrowing the vessels and hardening their walls, interfering with the flow of blood through our body.

Blood flow presents different patterns according to different body sites. For instance, in areas with branches or curvatures, or even in an area with large plaques, it can flow backwards, in what is called disturbed or retrograde blood flow. Studies have provided evidence that a retrograde blood flow pattern can lead to a phenomenon called endothelial dysfunction, characterized by the irresponsiveness of the vessel to a certain stimuli and imbalance of endothelium-derived vasoactive factors [i.e., nitric oxide (NO), endothelin-1]. The lack of vascular sensitiveness has been also associated with endothelial cell death in a process called apoptosis. The whole process is related to the development and progression of cardiovascular disease, such as heart attack, stroke, and hypertension.

Hypertension, or high blood pressure, is one of the most common heart diseases. It can start quietly, taking years until some symptom manifests itself. Uncontrolled high blood pressure can lead to severe health problems, including an improper function of the endothelium, plaque formation, and target organ diseases. The pathophysiology of hypertension is still unknown, but imbalance in NO production seems to be involved in all this process. NO is responsible for the regulation of the vessels’ caliber and vascular repair mechanisms. For example, when NO increases, it dilates the vessels; on the other hand, if there is a decrease in NO, the vessels do not dilate properly. This process implicates directly in the blood flow pattern throughout the body.

Moreover, the human organism presents mechanisms that act trying to repair all the damage inflicted in the endothelium. A group of cells from the bone marrow, called endothelial progenitor cells (EPC), is one of the responsible for restoring the health of the vessels. However, these cells are also impaired by the presence of high blood pressure and their recruitment might be damaged by the increased retrograde blood flow.

In our paper “Disturbed blood flow induces endothelial apoptosis without mobilizing repair mechanisms in hypertension”, recently published in Life Sciences we investigated the impact of different blood flow pattern on the vascular health of individuals with hypertension. For that, we manipulated the blood flow of hypertensive and health volunteers with a pressure cuff at 75mmHg. With a help of an ultrasound system, we were able to measure the responsiveness of the vessels to the procedure. Also, we collected blood samples to determine the EPC mobilization, the apoptosis level and the NO production.

We have found that hypertension per se induces endothelial apoptosis, providing evidence that high blood pressure could lead to vascular impairment and major chances of cardiovascular events. It was observed that disturbing the blood flow reduced the capacity of vascular dilation not only in patients with hypertension but also in healthy people, which supports the idea that the presence of increased retrograde blood flow is harmful to the vessels. Individuals with hypertension also presented greater endothelial apoptosis, and reduced repair capacity, through reduced EPC mobilization and NO production.

These findings shine new light about the importance of maintenance of vascular health, defining new ways to study and understand the process behind hypertension.

These findings are described in the article entitled Disturbed blood flow induces endothelial apoptosis without mobilizing repair mechanisms in hypertension, recently published in the journal Life SciencesThis work was conducted by Helena N.M. Rocha, Vinicius P. Garcia, Gabriel M.S. Batista, Gustavo M. Silva, João D. Mattos, Monique O. Campos, Antonio C.L. Nóbrega, Igor A. Fernandes, and Natália G. Rocha from the Fluminense Federal University.

About The Author

Helena N.M. Rocha

Helena Miguens Rocha is a PhD student that currently works at the Department of Physiology and Pharmacology at the Fluminense Federal University (UFF). Her current project is 'The impact of obesity on endothelial responses to mental stress mediated by angiotensin II.'

Natália G. Rocha

Natália is assistant professor at the Department of Physiology and Pharmacology (MFL), Fluminense Federal University. She studies Cardiovascular Physiology, Cell Biology and Molecular Biology. Her current project is 'The impact of obesity on endothelial responses to mental stress mediated by angiotensin II.'

Speak Your Mind!

READ THIS NEXT

Use Of DNA Analysis In Identifying The DPS And Population Origin Of Highly Migratory Atlantic Sturgeon

There are between 25 and 27 species of sturgeons in the temperate waters of the Northern hemisphere, and populations in all are depleted or threatened with extirpation because of overharvesting and habitat alteration. Atlantic sturgeon Acipenser oxyrinchus oxyrinchus was at one time distributed on both sides of the Atlantic Ocean, but the last European populations […]

Petroleum-Derived Pollutants Cause Serious Impacts On Minute Oceanic Plants

Accidental spills of petroleum or crude oil into the sea cause widespread damage to marine ecosystems worldwide. The most notorious component of crude oil is a group of chemicals collectively known as Polycyclic Aromatic Hydrocarbons (PAHs). They are toxic and highly persistent pollutants, causing mortality and physiological damage in marine plants and animals. They can […]

What Is The Ionic Charge Of Zinc (Zn)?

Zinc (Zn) is a  metal located in the group 12 of the d-block on the periodic table. The atomic number of zinc is 30 meaning that its nucleus contains 30 protons. Zinc most commonly forms positively charged cations with a charge of +2. Zinc will rarely form ions with a +1 charge but it will […]

Deducing Jupiter’s Stratospheric Circulation From Its Composition

Jupiter is the king of all planets in the Solar System. It is the largest one, mostly composed of gas, and is thought to have formed earlier than most of the rocky planets – including Earth – in the history of the Solar System. It is of prime interest because it keeps a record of […]

Hydrological And Shallow Flow Modeling: Solutions Converge

Hydrological modeling is at the core of many environmental, agricultural, and engineering applications, research, and practices. Decision-making on managing our water resources has become increasingly model-based and with this, we need to be able to assess errors and uncertainties using hydrological models. These models have been developed to understand and predict how precipitation in a catchment […]

The Search For Efficient, Low-Emission Fuels

New pollution-free fuels are being trialed to enhance and eventually replace fossil fuels. A diesel-based fuel with an added hydrocarbon compound has been shown to significantly reduce soot output from engines. Switching from diesel to this new fuel could lower atmospheric carbon dioxide levels and other emissions that are harmful to human health. The majority […]

Strategies For Encouraging Solar Technology Adoption Through Public Engagement And Visual Exposure

Globally, electricity systems are undergoing a significant transformation to green energy in response to technology change and climate policy. Yet, in some countries with high renewable energy potential, the transition is hardly evident. In Canada, for example, installed solar capacity is approximately 1.0% of total capacity in 2014 (National Energy Board, 2016, p. 81). This […]