ADVERTISEMENT

If You Burn Them, They Will Return: A Case Of Ant-Plant Interactions In A Fire-Prone Brazilian Ecosystem

Climate changes and anthropogenic disturbances are current threats to biodiversity and ecosystem functioning. Ecosystem health depends not only on its biodiversity per se but also on services and functions played by species and their interactions. Ant-plant interactions are an outstanding model to study ecosystem structure and functioning since they each fill distinct ecological roles.

Thus, the understanding of how ant-plant interactions dynamics, or ant-plant interaction networks, are affected by climatic fluctuations and anthropogenic fires is relevant to predict ecological and evolutionary outcomes in a changing world.

ADVERTISEMENT

Our study looked for whether the temporal dynamics of ant-plant networks is driven by seasonal variation in climatic conditions (i.e., temperature and precipitation), and to what extent fire disturbance alters this dynamic. We also studied the thermal response of ant community in order to understand temperature influence on ant activity, and consequently, ants’ tolerance to climate change. To do so, we carried out this field research in a tropical fire-prone ecosystem, locally known as Campo Rupestre.

Campo Rupestre is a tropical megadiverse mountaintop grassland ecosystem that occurs in Brazil, wherein plant-related rewards located in flowers, fruits, and extrafloral nectaries are used as food by ants. This fire-prone environment has been subjected to recurrent human-made fires and hard climatic filters that shape species distribution and vegetation cycles. Ongoing evidence has shown negative effects of fire on its vegetation structure and on ants that live in the soil. More than that, we already know that climatic conditions strongly change along its mountain range influencing species occurrence.

In this way, we monitored ants foraging on plants and consuming food resources (i.e., plant-derived rewards), quarterly, for two consequent years: one before unmanaged fire events have occurred and the other after the disturbance. We have found that warmer and wetter conditions prompted increases in the diversity and frequency of ant-plant interactions (measured by ecological network metrics). These results are likely due to upsurges in plant resource availability in these periods, and higher ant activity in these abiotic conditions. We also observed that the studied ant community has a low heterogeneity and a huge overlap in its thermal responses, which means a wide thermal niche that leads to higher tolerance to temperature fluctuation. Our study also has shown that, in spite of negative effects of fire on the diversity and frequency of interaction networks, these effects are quick, as interactions recovered up to up to half a year after fire disturbance.

ADVERTISEMENT

These findings highlight that wide thermal response of ant species and fire resilience to fire shown in ant-plant interactions likely promote ant-plant networks’ reliability over multiple seasons. The high overlap and broad thermal niches of ant species interacting with plant resources suggest that ant diversity plays a minor role in the tolerance against climatic changes in this fire-adapted community. These pieces of evidence open a new path to explore thermal responses of species and their ecological interactions in broader gradients of environmental conditions and ecosystem disturbances, such as resource deprivement under deforestation and/or land use.

Long-term studies that consider assisted burnings are desirable to forecast the impact of fire regimes and their synergy with climate on fire-prone ecosystems functioning in our changing world. To end, our findings adds to evidence showing that ecological interaction networks are useful tools to monitor the impacts of environmental changes such as anthropogenic disturbances.

These findings are described in the article entitled Resilience to fire and climate seasonality drive the temporal dynamics of ant-plant interactions in a fire-prone ecosystem, recently published in the journal Ecological Indicators.

Comments

READ THIS NEXT

Wild Winds On Neptune

Neptune’s upper atmosphere contains some of the fastest winds in the solar system, reaching speeds upwards of 400 m/s (900 […]

Study Finds Those Who Have Autism More Likely To Suffer From Depression

A new study done by researchers at the University of Bristol in the United Kingdom implies that depression is up […]

How Many Face Cards Are In A Deck?

How many face cards are there in a deck of cards? There are 12 of these face cards in a […]

How SBA-15 Will Affect The Elimination Of Pollutants

SBA-15 is a mesoporous, silicon-based molecule. With large surface areas, pore volume, pore diameter and ordered channel structure, it has […]

On/Off Switching During The Synthesis Of Complex Sugars

Glycosylation is the ubiquitous, highly-regulated process by which carbohydrate is added to proteins and lipids to form glycoconjugates (glycans). These […]

Lamellar Polymer Single Crystal Dielectrics For Electronic Devices

Lamellar polymer single crystals have been studied since the 1950s, while the potential application of these highly-ordered polymers is much […]

People From Different Countries, Age Groups, And With Different Formal Education Level Mainly Are Very Similar In Their Values And Attitudes

“We are far more united and have far more in common with each other than things that divide us.” — […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?