ADVERTISEMENT

Hydrothermal Lithiation Boosts The Electrochemical Performance Of The NCM Cathode Materials For Lithium Ion Batteries

With the fast increasing pressure of resources and environmental issues, clean energy is becoming an urgent demand in our life. Among various candidates of cathode materials, layered Li[NixCoyMn1-x-y]O2 (0‚ȧx‚ȧ1, 0‚ȧy‚ȧ1) cathode materials has been gradually employed on EVs, HEVs and PHEVs and other electronic products and shows a promising future compared with the toxic LiCoO2 and the relatively low energy density LiMn2O4.

Unfortunately, many obstacles such as Li/Ni mixing, side-reactions between the electrode and electrolyte, safety and so on, especially at a high cut-off voltage, hinder the commercialization process. Many efforts such as ion substitution, surface coating and new synthetic routine etc. on NCMs are made by the researchers to improve the high cut-off voltage performance.

ADVERTISEMENT

Recently, layered Li[NixCoyMn1-x-y]O2 (0‚ȧx‚ȧ1, 0‚ȧy‚ȧ1) cathode materials prepared by a hydrothermal lithiation routine has been investigated by the researchers from Central South University, P.R. China. The obtained LiNi0.5Co0.2Mn0.3O2 cathode materials exhibit an excellent electrochemical performance.

Firstly, the lithiated transition metal oxide precursor has been prepared via a hydrothermal process. Compared with the traditional solid-state method, the lithiation process assists Li+ to diffuse into the spherical-like particle‚Äôs crystal structure, resulting in the formation of the lithiated composite oxide precursor with typical őĪ-NaFeO2-type layered structure in aqueous solution.

Besides, the aqueous lithiation process also helps the Li homogeneously distribute in the particles at an atomic level, avoiding the uneven lithium distribution by traditional solid state method. Those effectively promote the preparation of the cathode materials with high performances in the post-heat treatment.

Secondly, the obtained LiNi0.5Co0.2Mn0.3O2 cathode materials exhibit an excellent structural and interfacial stability as well as kinetic characters. The decreased Li/Ni mixing (only 2.27%) and suppressed polarization effects (the voltage drop is only 0.41 V after 100 cycles) demonstrate that the obtained NCM cathode has an enhanced structural and interfacial stability. Compared with the traditional solid state method, the as-prepared NCM523 cathode material shows a suppressed charge transfer resistance (Rct) and a higher lithium ion coefficient (10-8-10-11 cm2·s-1) upon cycling, indicating enhanced kinetic characters.

ADVERTISEMENT

Importantly, the electrochemical properties at high cut-off voltage have been remarkably improved. The as-prepared NCM523 cathodes deliver a superior initial capacity of 187.3 mAh g-1 and corresponding to the capacity retention of 81.90% after 100 cycles over 3.0~4.6 V at 1C rate (1C= 155 mAh g-1), far higher than that of the same cathode prepared by the traditional solid-state method (the initial capacity is 186.6 mAh g-1 and the capacity retention is only 74.11%). The rate capability has also strengthened after the hydrothermal lithiation.

Based on this discovery, it is believed that the hydrothermal lithiation would be potentially applied in improving the electrochemical properties of the layered Li[NixCoyMn1-x-y]O2 (0‚ȧx‚ȧ1, 0‚ȧy‚ȧ1) cathode materials, especially at the high cut-off voltage.

The work is led by Prof. Yunjiao Li. The paper, Enhancing the High-voltage Electrochemical Performance of the LiNi0.5Co0.2Mn0.3O2 Cathode Materials via Hydrothermal Lithiation, is published in Journal of Material Science, (2018) 53:2115-2126.

Comments

READ THIS NEXT

Two Cases Of Unusual Migraine Auras

Neurological symptoms during sex need urgent tests to look for a serious cause such as a bleed on the brain.¬† […]

What Is The Nucleolus?

The nucleolus is a smaller organelle found within the nucleus of eukaryotic cells. The nucleolus is comprised of collections of […]

How To Maximize Solar Output Where The Sun Hardly Shines

Electricity from solar photovoltaics (PVs) is the fastest-growing source of new electric power worldwide. The growth is due to the […]

Treatment With A New Drug Strengthens The Muscles Of Patients With Pompe Disease

Pompe disease is a rare and potentially fatal metabolic myopathy (prevalence 1 in 20,000). In Pompe disease, the deficiency of […]

NO Lewis Dot Structure

Nitric oxide (NO) is a gaseous compound composed out of a single nitrogen atom and a single oxygen atom. It […]

What Is Sodium Hydrogen Carbonate?

Sodium Hydrogen Carbonate, sometimes called Sodium bicarbonate, and commonly known as baking soda is a common chemical compound with a […]

In The Future, The Best Solution To Cavities Might Be A Vaccine

The least favorite thing for most people is a visit to the dentist. Whether it is a simple checkup or […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?