ADVERTISEMENT

Hydrogen Peroxide Belongs In Every Home And – YES! – Every Lab, Too

Since the time hydrogen peroxide has been introduced in the markets, there has been a steady increase in the things this wonder chemical can do. From being used as a mild disinfectant, antibiotic, hair bleaching agent, instant fix for tooth whitening, adding the desired highlights to your hair, to being used in cleaning tiles, toilet bowls, rugs and carpets, and even drying acne.

There seems to be nothing that hydrogen peroxide (H2O2, simple peroxide i.e. a compound having two oxygen atoms attached by a covalent single bond H-O-O-H) can’t do to ease your day-to-day life. But there are some contamination issues in the squeaky-clean laboratory setting that has even scientists scratching their heads to find answers for.

ADVERTISEMENT

One of such pestering issues is the contamination of nucleases which ruin the quality of the nucleic acids (DNA and RNA) isolated from various precious samples. Nucleases especially the ones that can degrade RNA (RNAse A) is so sturdy that one can’t get rid of them even by boiling. This kind of contamination not only compromises the quality of the genetic material isolated but also prevents the scientists from using this isolated material for subsequent high throughput experiments. Researchers use stringent precautions to maintain sterile conditions when they isolate RNA, nevertheless it is not uncommon to find samples degraded.

In a recent report published in a leading scientific journal, scientists used hydrogen peroxide to successfully defeat the menace of nucleases that might still be active in the agarose or running buffer which they use to qualitatively analyses the quality of the genetic material. Several methods are already established which can achieve the desired results. But, they either use noxious chemicals like methylmercury hydroxide, formaldehyde, formamide (potent carcinogens which not only expose the lab workers to dangerous fumes but their discarding procedures are also pretty lengthy) and urea for rather complicated instrumentation.

This recent research has simplified it by adding the humble hydrogen peroxide. According to the scientists, 1ml of commercial hydrogen peroxide (30%w/v conc.) is added to the 100 ml mixture of agarose and buffer and allowed to sit for about 10 minutes. Subsequently, the entire mixture is boiled to melt the agar and casted in the electrophoresis cassettes, and it efficiently rids of all the nucleases. This method is not only quick, it is environment-friendly too. Boiling of the hydrogen peroxide mixture basically breaks the remaining H2O2 molecules into water and oxygen, hence being safe to the researchers and easy to discard.

Image republished with permission from Elsevier

The paper further goes on to explain the mechanism by which hydrogen peroxide achieves this amazing feat. Hydrogen peroxide unleashes a two-pronged attack on nucleases. Firstly, by altering the secondary structure of the nuclease enzyme (i.e. it affects the way a protein folds hence rendering it ineffective) and secondly by causing the proteins to aggregate together and become too crowded to be functional.  Nucleases are proteins and proteins work best when they are structurally in the correct conformation and exist either as a single entity or usually in a dimer or trimer conformation. When either the structural backbone of the protein is altered or when misfolded proteins accumulate or clump together their activity is either completely lost or severy compromised.

ADVERTISEMENT

Hydrogen peroxide-based effective inactivation of RNAse A (an RNA nuclease) and DNAse (a DNA nuclease) is indeed a novel, safe, eco-friendly method to reduce the cost on laboratory funds, the health of the researchers and the environment.

These findings are described in the article entitled Hydrogen peroxide agarose gels for electrophoretic analysis of RNA, recently published in the journal Analytical Biochemistry. This work was conducted by Renu Pandey and Daman Saluja from the University of Delhi.

Reference:

  1. Renu Pandey, Daman Saluja. Hydrogen peroxide agarose gels for electrophoretic analysis of RNA, Analytical Biochemistry, Volume 534, 2017, Pages 24-27, ISSN 0003-2697, https://linkinghub.elsevier.com/retrieve/pii/S0003269717302919.

Comments

READ THIS NEXT

Diseases In A Double-Pack: Genes Could Increase The Likelihood For Depression And Migraines

What do a migraine and depression have in common? Australian scientists unravel with the help of thousands of twins why […]

How Many Amino Acids Are In The Body: Essential And Non-Essential

Amino acids are compounds which contain the functional groups amine and carboxyl, and are composed of the elements hydrogen, oxygen, […]

Sound Energy: Definition And Examples

Sound energy is the energy released by the vibration of objects, and measured in a unit called joules. Sound is […]

Cephalostatin 1 Analogues: Promising Anti-Tumor Drugs 

Cancer is a leading cause of death worldwide, and the number of deaths is projected to continuously rise in the […]

Biggest Country In The World By Population And Area

What’s the biggest country in the world? By population? By land area? Despite having a population of over 7.7 billion […]

Cell Culture: From Industrial Brewing To Transforming The Science Of Medicine

Safe medical treatments are crucial tools in the fight against human diseases. Ensuring that medical treatments are safe inevitably requires […]

Implicating Dendritic Cells In The Pathogenesis Of Anterior Uveitis 

Uveitis is a potentially blinding condition whereby inflammation may irreversibly damage the delicate intraocular structures. It can be associated with […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?