How To Teach An Old Dog New Tricks: Advancing Perovskite Via Anion Doping

Hydrogen can be easily produced through water electrolysis (2H2O → 2H2 + O2), a process that makes use of electricity to break the bonds between constituent elements (i.e., hydrogen and oxygen) of water molecules and releases them in a gaseous form.

Hydrogen gas is high in energy, yet an engine that burns pure hydrogen produces almost zero pollution, unlike those powered by burning fossil fuels. Therefore, water electrolysis has long been an important research area for conversions of intermittent energy sources, such as sunlight and wind, into versatile and easily controllable forms of energy.

One of the biggest challenges that keep this process from being of large-scale application is the lack of suitable electrode materials. Pt is the state-of-the-art electrode components for catalyzing the hydrogen evolution reaction (HER), while RuO2 is the one for the oxygen evolution reaction (OER). However, both of them suffer from the high cost, rare reserve, and poor stability. As a group of promising alternative electrode materials, perovskite oxides have been widely studied to enhance the electrode reaction rates and electrode stability in water electrolyzers. However, the current demand calls for higher activity and stability than what the state-of-the-art perovskite oxides provide. 

Typically, in the perovskite ABO3 structure, the B-site cation is 6-fold coordinated with oxygen anions, while the A-site cation is 12-fold coordinated. Researchers in Canada and China have put forward a new way of F-anion substitution to regulate the p-blocking centers of perovskite for water splitting electrocatalysis. The researchers proposed the possible function mechanisms that are fundamentally beyond the current understandings drawn from A-/B-sites doping and can shed light on the influences of the F-anion over the catalytic performance. The F-anion doping approach is simple and universal and begins at atomic levels, so it can provide a new design guide for perovskite oxides.

The robustness of the new electrolyzer was tested under extreme conditions of high current density (~0.21 A cm–2) and 10 M KOH, conditions that are often adopted in the commercial alkaline electrolyzers. It is seen that the new electrolyzer exhibits good electrochemical stability during this short-term test. More importantly, the amount of produced O2 is very close to the theoretical value, and such good performance is reserved at the end of the session, reflecting a constant catalysis rate and stability under harsh conditions.

These results faithfully prove the requirements for commercial application. While there’s still more work to be done, the new research findings could help researchers design water electrolysis systems that use these types of novel materials. Next, the research team is turning its focus to stabilizing the electrode materials in order to prevent its swift degradation.

These findings are described in the article entitled Activating p-blocking centers in perovskite for efficient water splitting, recently published in the journal Chem. The work mainly describes the promising anion substitution method to regulate the lattice O activity in perovskite oxide, from a performance and design perspective. Furthermore, it discusses the fundamental concepts in electrocatalysis for the rational design of perovskite oxide through anion substitution and minutely inspects the current understanding and its impact on performance trends and future directions of perovskite electrocatalysts. This work was conducted by Dr. Bin Hua, Dr. Meng Li, and colleagues from the University of Alberta (Canada), East China University of Science and Technology (China), and Natural Resources Canada.


  1. Bin Hua, Meng Li, Wanying Pang, Weiqiang Tang, Shuangliang Zhao, Zhehui Jin, Yimin Zeng, Babak Shalchi Amirkhiz, Jing-Li Luo, Activating p-Blocking Centers in Perovskite for Efficient Water Splitting, Chem, 2018, 4, 2902-2916. 

About The Author

Meng Li

Meng is a Geomechanics Engineer at Itasca Consulting China Ltd. and graduate research assistant at the University of Alberta.

Bin Hua

Bin is a professor and research scientist at the University of Alberta, specializing in wavelet and framelet analysis, approximation theory, computational harmonic analysis, wavelet-based algorithms,  and image processing.

Speak Your Mind!


Ferrous Metals

Ferrous metals by definition contain iron in them whereas non-ferrous metals do not contain iron. The word iron is derived from the Latin word ferrum, hence the English derivation ferrous to describe iron bearing metals. The main thing to know about metals is whether they are ferrous or non-ferrous. Once we have made the distinction, we […]

Redox-Active Approach Towards New Magnetic And Conductive Two-Dimensional Materials

It is hard to imagine how electronics would have evolved over the years without the extensive use of semiconductors. These materials, in which the charge of electrons can be controlled, constitute the basis of systems such as transistors and integrated circuits, both of which are essential components in everyday electronic devices. On the other hand, […]

Solar Photoactive Materials For Hydrogen Generation And Water Treatment

Solar photoactive material like TiO2 has a wide range of applications. It can be used in photovoltaic (PV) cells, hydrogen generation, water treatment, and much more. The demand for renewable energy resources is increasing day by day due to its environment-friendly nature, never-ending source, and cost-effectiveness. Various renewable fuels are available in nature and can […]

Investigating Low-load Resistance Training With Blood Flow Restriction

The KAATSU training method, now better known as blood flow restriction (BFR) training was created in 1966 by Japanese sports scientist and bodybuilder Yoshiaki Sato. This technique is characterized by restricting muscle blood flow by applying an external pressure, typically using a tourniquet/cuff system applied to the proximal section of the upper or lower limbs. […]

Communist Countries Around The World In 2019

Currently in the world today there are five countries classified as communist countries: China, Cuba, Laos, Korea, and Vietnam. But what does it mean for these countries to be communist countries? In order to better understand what the governmental and economic systems of these communist countries are like, let’s take a closer look at the […]

Electromagnetic Processing Of Sintered Powder Metal Parts

Sintering is the process of compacting a material, usually in powdered form, into a solid mass using heat or pressure, but without melting the material. It is a manufacturing technology that dates back to at least 3000 B.C. and was used to make ceramic objects that were hard to cast. Modern sintering of metallic and […]

Electrochemical Additive Manufacturing: A Low Cost Desktop 3D Printer

Additive manufacturing, or 3D printing as it is commonly known, enables the creation of complex 3D geometries through the selective layer-by-layer deposition of material. The versatility of 3D printing as a manufacturing process removes the need for specific tooling allowing the process to have significantly reduced production times compared to traditional subtractive manufacturing processes such […]