Geological Influences On Barrier/Lagoon Behavior At Decade To Century Timescales

Barrier/lagoon systems occur on about 10% of the world’s coast and they constitute around 90% of the US east coast. They are attractive sites for development and many barriers host or offer protection to major urban centers. Consequently, at a time of global climate change and sea-level rise, understanding the behavior of barriers at decade to century timescales (the mesoscale) is an important scientific and societal goal.  Barriers are often strongly affected by extreme storms and they play an important role in dissipating wave energy. On developed barriers, this often results in damage to buildings and other infrastructure and leads to human intervention on the barrier shoreline.

In efforts to understand past coastal change and predict future trends and storm impacts, scientists have traditionally focused on the role of dynamic drivers (waves, tides, winds), whether in the context of specific planned developments or assessing future risks. Except at very short timescales, however, straightforward linking of dynamic forcing and response is seldom able to account for observed behavior. Instead, numerous studies show that geological factors (that are usually unaccounted for or disregarded in such investigations), exert a major influence on barrier behavior at societally-relevant timescales.

Progress in understanding past behavior of barriers has been hampered by discontinuous and incomplete datasets. The record of mesoscale change is improving with the acquisition of long-term morphological datasets and associated dynamics. In addition, exploratory modeling is improving understanding of the influence of various dynamic and geological factors.

A review of recent studies shows that geological factors exert a significant or even dominant control on barrier behavior at decadal to century timescales. These geological controls (including contemporary barrier/lagoon morphology, constituent materials, underlying geology and topography, sediment supply) can be quantified to some extent by detailed investigations but in all but a few locations, such data are absent. This sets an unavoidable constraint on efforts to quantitatively predict the future behavior of barrier systems, which are strongly site-specific in terms of their geological setting and morphology.

This image from the Outer Hebrides of Scotland shows the influence of unerodible underlying bedrock (Credit: J. Andrew G. Cooper)

Geological controls exist in a network of interactions that individually and collectively influence mesoscale barrier behaviour, including dominant, first-order controls such as:

  • Basement slope;
  • Basement irregularity and erodibility;
  • External sediment supply;
  • Barrier orientation; and
  • Shoreline lithification (beachrock and aeolianite)

An important intermediate level of geological control is exerted by the morphology of the adjacent shoreface. Shorefaces are themselves influenced by underlying geological factors, but they are usually dynamic at longer timescales than barriers, making their morphology a geological constraint.

Ultimately erodible, but initially coherent, peat along the Outer Hebrides (Credit: J. Andrew G. Cooper)

Geological influences are in most cases unquantified and are usually disregarded when conceptualizing and modelling barrier evolution for practical and scientific purposes. Consideration of the geological influences is, however, essential in efforts to predict future behaviour at mesoscale (management) timescales. It needs to be taken into account in planning for the near future.

These findings are described in the article entitled Geological constraints on mesoscale coastal barrier behaviour, recently published in the journal Global and Planetary Change. This work was conducted by Andrew Cooper from Ulster University, Northern Ireland, and Carlos Loureiro and Andrew Green from the University of KwaZulu-Natal, South Africa.

About The Author

Andrew Cooper

I am a geologist with research interests in coastal geomorphology and morphological behaviour at timescales ranging from seasons to millennia.  I also apply that understanding to the pracicalities of coastal management, especially in the area of climate change adaptation.

I use field mapping, coring, seismic stratigraphy, ground-penetrating radar and historical records (maps and air photos) to assess the record of coastal change and am interested in the role of secular changes in climate and sea level, as well as episodic changes (storms and tsunami) as drivers of change.  I have a particular interest in the role of geological parameters as constraints on coastal behaviour.

Speak Your Mind!

READ THIS NEXT

It’s Time To Revise STEM Doctoral Admissions Procedures

The selection of students for science, technology, engineering and mathematics (STEM) doctoral programs determines who will be leaders in higher education and fields that underpin the U.S. economy. For decades, this selection process has relied heavily on the Graduate Record Examination (GRE), a test originally developed to “level the playing field” for applicants from variously […]

Do Roaches Bite? Protect Yourself From A Cockroach Bite

Cockroaches or specifically nocturnal omnivores can bite a human skin. Though they bite rarely but even a simple wound caused by them may last for up to a week’s time. Can all types of roaches bite? Yes, all of them are capable of biting. If they feel threatened they opt for being offensive rather than being […]

Creepy And Crawly? Infants Are Stressed When Seeing A Spider Or A Snake

Many people experience a strong dislike of everything crawling or slithering. While not everybody is afraid of spiders and snakes, clinical fears of these animals are among the most common types of specific phobia. These extreme fears can severely interfere with everyday activities such as taking a walk outdoors. Given that the risk of being […]

Exposed Identity: Microplastics Under The Raman Microscope

The issue of microplastic pollution is raising serious concern among scientists and the society at large 1,2. Microplastics, tiny plastic fragments ranging from 1 micron to 5 millimetres in size, have found their way into a variety of terrestrial and aquatic environments 3,4, marine organisms 5and even consumer products, including food 6–8and drink 9. Are […]

Circuit QED Controlled To Implement Quantum Computers

Quantum computers spare no efforts to offer the superior promise of performing complex and unimaginable problems, which are far beyond the reach of any classical computers known at present, in a reasonable time with high accuracy. The new approach for computing, based on the central principals of quantum mechanics, could have enormous applications, and may […]

Antidepressant Discontinuation Syndrome

Depression is a highly prevalent, severely debilitating mental disorder that affects nearly 5% of the global population, and has a high risk of relapse. Commonly used to treat depression, antidepressant drugs are currently the most prescribed class of CNS medications globally. However, overt side-effects markedly complicate antidepressant pharmacotherapy. For example, digestive and sleep disorders, headache, […]

This Is The Longest River In Europe

The longest river in all of Europe is the Volga river, which winds it ways through central Russia and drains in the Caspian Sea. The Volga river runs 3,530 kilometers long (2,192 miles), and the Volga river basin is populated with many of Russia’s largest cities. Physical Attributes Of The Volga The Volga River sits […]