ADVERTISEMENT

Energy Transfer Phenomenon Leading To Photon Up-conversion With Application To Optical Thermometry

Temperature is a fundamental property of matter and it is related to the degree of warmth of a material. Temperature is measured by a thermometer, which is a device that must contain some temperature dependent element in order to estimate the temperature, as for example the volume of liquid mercury in a glass tube.

It may be used to assess the operation condition of electrical, mechanical, chemical, and biological systems. Among various types of thermometers or temperature sensors, the ones based on some optical response are particularly attractive because they allow remote, real-time, and large-scale reading of the temperature.

ADVERTISEMENT

Fiber optics thermometers, for example, are advantageous because they have non-toxic, non-conductive, non-corrosive elements. One class of fiber optics thermometer is based on the change of fluorescence spectral profile with temperature and in this category, we find lanthanide-based optical thermometers. Lanthanides are particularly interesting because they may produce fluorescence with a broad spectral coverage (spanning from the UV to the near-infrared) when incorporated in convenient solid-state hosts.

This characteristic allowed lanthanide-doped materials (LDMATs) to become popular phosphors for use in lighting and display technology. Concerning application in optical thermometry, LDMATs in fiber optics form have been considered the top choice for environments where contact thermometers cannot be used such as electric power plants and refineries. More recently, optical thermometry using LDMATs in nanoparticle form has been successfully employed in studies using rats to demonstrate its potential use for photothermal intratumoral therapy where real-time temperature regulation is crucial.

Holmium is a lanthanide that when it is incorporated into a crystalline network may generate fluorescence at the visible spectral range due to transitions inside the 4f electronic shell. Fluorescence at the visible is generally produced in holmium doped materials by exposing the sample to near-infrared light, a process known as energy up-conversion. We investigated the up-conversion fluorescence properties of holmium doped in calcium fluoride powders and we observed that the apparent color of its fluorescence changed from green to yellow when the temperature of the sample was raised above room temperature.

The change in color occurs because the relative intensity between two fluorescence lines of holmium peaked at the green and red spectral regions changes with the temperature. We developed a rate equation model in which the color change of the fluorescence with temperature could be explained based on the dynamics of the electronic populations of holmium.

ADVERTISEMENT

The temperature sensitivity of this kind of thermometer was estimated by analyzing the rate in which the fluorescence intensity ratio between the green and red emission lines changed with the temperature. This is a reliable way to perform real-time readout of temperature because it is independent of fluctuations of the excitation source and detection. This method is also inexpensive as a simple two-channel signal division electronic circuitry can be employed for signal processing.

These findings are described in the article entitled A study of energy transfer phenomenon leading to photon up-conversion in Ho3+:Yb3+:CaF2 crystalline powders and its temperature sensing properties, recently published in the journal Current Applied Physics. This work was conducted by Glauco S. Maciel from Universidade Federal Fluminense. 

Comments

READ THIS NEXT

Scientists Finally Figured Out Why Rain Smells So Good

When it rains we get the strong yet pleasant aroma from the wet earth and clean air breeze. It is […]

This Group Of Diving People Have Evolved Larger Spleens To Spend More Time Underwater

A study recently published in the journal Cell has found that the Bajau people, who live in Southeast Asia, have […]

“Rogue” Sunspots Spoil Chances For Long-Term Space Weather Forecasting

The number of solar spots and eruptive phenomena connected to them show cyclical variations with a mean period of 11 […]

Investigating The Pool Of Hematopoietic Stem Cells In Bone Marrow

Controlling proliferation and differentiation of stem cells is one of the important features of homeostasis. Hematology is an advanced field […]

Toward A 3D Metamorphic Touchpad

Published by Shantonu Biswas California NanoSystems Institute, University of California, Santa Barbara These findings are described in the article entitled […]

Recent Study Shows That Bacteria And Fungi In The Gut Of Babies Are Linked To Future Asthma Risk

What causes asthma? At a time when global rates of asthma have reached alarming rates, this important question remains unanswered. […]

Effect Of Chemical Structuring On Physical Architecture In Superhydrophobic And Organic Photovoltaics

Physical structuring is one of the smart ways to explore the maximum capability of a known material, in particular of […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?