Diversity-oriented Synthesis Of Oxacyclic Spirooxindole Derivatives: Useful DOS Strategy For Drug Discovery

In recent years, diversity-oriented synthesis (DOS) has drawn a huge interest from researchers in the vicinity of synthetic organic chemistry and medicinal chemistry because it is a powerful device to find the most structural variability from easy starting materials. Also, it is important to synthesize a variety of novel and biologically attractive small molecules in drug discovery.

The spirocyclic oxindole scaffolds are significant in nature because they occur in many natural products like horsfiline, gelsemine, gelseverine, and rhynchophylline. Especially, the construction of oxygen-containing spirooxindole frameworks has fascinated large attention of synthetic chemists because, they have various types of bioactivity such as anticancer, antimalarial, antitubercular, and anti-HIV. Therefore, the development of efficient methods to create substituted spirooxindole is of great impact. Recently, a lot of research has been done in the synthesis of spirooxindoles.


In this regard, we have developed an efficient approach for the synthesis of new complex oxacyclic spirooxindole scaffolds by using a diversity-oriented synthetic strategy (Adv. Synth. Catal. 2017, 359, 3444 – 3453). First, we synthesized required (1,6)/(1,7)/(1,8)–enynes from the simple substituted isatins as shown in Figure 1. These oxindole enynes are used as starting materials for the divergent synthesis of various functionalized oxacyclic spiroxindoles such as spirooxindole-5,6-bicyclic/5,5-bicyclic cyclopentenones and spirooxindole-vinyldihydropyran/tetrahydrooxepines by using Cobalt catalyzed intramolecular Pauson–Khand (2+2+1) cyclization reaction (IPKR) and Ruthenium-catalyzed Ring-closing Enyne Metathesis (RCEYM).

Under Intramolecular Pauson-Khand reaction optimized conditions by using Co2(CO)8 (1.1 eq.) in DCM at room temperature for 2 h, followed by cycloaddition promoted with NMO (6.0 eq.), we have explored a variety of spirooxindoles such as spirooxindole-5,6-bicyclic fused cyclopentenones (5) and spirooxindole-5,5-bicyclic fused cyclopentenones (7) by changing of R/R1 groups including electron-donating and electron-withdrawing groups on the oxindole moiety in good to excellent yields.

In 2016, Schreiber et al. (Org. Lett. 2016, 18, 6280–6283) used these classes of small molecules (fused cyclopentenone derivatives) in drug discovery, as well as those relying on fragment-based drug discovery (FBDD), high-throughput screening (HTS) and real-time biological annotation in cell morphological features.

On the other hand, After optimization of Ring-closing Enyne Metathesis (RCEYM), with  Grubbs-1 catalyst (5 mol%) in DCM at 40oC for 12 h, we have synthesized various spirooxindole-vinyl dihydropyrans (6) and spirooxindole-vinyl tetrahydrooxepines (10) in excellent yields and we were pleased to find that the reaction also accommodated several functional groups, such as 5-Me, 5-OMe, 5-OCF3, 5-F, 5-Cl, 6-Cl, 7-Cl, 4-Br, 5-Br on the oxindole moiety.


In summary, we have developed an efficient strategy for diversity-oriented synthesis (DOS) of novel oxygen-containing fused spirooxindole scaffolds from simple isatins via IPKR and RCEYM reactions. We hope that the elaborated DOS approach will find applications in drug discovery and the creation of bioactive compounds.

This study, Diversity-Oriented Synthesis of Oxacyclic Spirooxindole Derivatives through Ring-Closing Enyne Metathesis and Intramolecular Pauson–Khand (2+2+1) Cyclization of Oxindole Enynes was recently published by Satheeshkumar Reddy Kandimalla and Gowravaram Sabitha (Indian Institute of Chemical Technology) in the journal Advanced Synthesis & Catalysis.

Comment (1)



Researchers Find Evidence Of Martian Paraglacial Period

Most of the surface of Mars is currently too cold, and the atmosphere is too thin, for liquid water to […]

Lessons From Two Tariffs To Encourage Energy Efficiency

Global concerns such as climate change and dependence on polluting energy sources can be addressed by energy efficiency. Reducing energy […]

Why Are Flamingos Pink?

Flamingos are pink because of the food they eat. The high concentration of beta-carotene in the shrimp, algae, and larva that […]

All You Need Is Clove: Sustainable Composites For Active Food Packaging

Unpackaging convenience food is one of the most routine, boring, and trivial activities in the West. The massive repetition during […]

On-Demand Release Of Persulfides As Antioxidants

Cellular redox balance is critical for maintaining normal function and preventing damage to DNA and proteins, which may lead to […]

Gaze Entropy: How The Eyes Become A Window Into The Mind

Visual information is transmitted to the brain through two types of light-sensing cells (rods and cones) located across the retina. […]

Anaerobic Digestion: A Promising Solution To Waste

In an energy constrained world, anaerobic digestion (AD) of organic fraction of municipal solid waste (OFMSW) i.e. food residues and […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?