Developing Highly Stretchable E-textiles For The Full Range Of Human Motions

In recent years, textile-based electronics (e-textiles), as new-fashioned wearable devices, have drawn surging attentions in applications such as artificial skins, motion detection, and health monitoring systems since they can perfectly combine the functionality of wearable electronics with the soft and comfort properties of clothing.

To date, highly sensitive textile-based pressure sensors and highly stretchable textile-based strain sensors are widely researched for wearable devices. Nevertheless, in addition to high sensitivity and stretchability, an ideal wearable sensor should have the ability to feel multiple mechanical stimuli such as both physical pressure and lateral strain, as it allows full-range detection of human motions (i.e., subtle vibration and large strain) just like human skin. Unfortunately, almost all the above reported textile-based sensors or e-textiles can only detect pressure or strain unilaterally, thus it is necessary to develop humanoid e-textiles simultaneously satisfy high stretchability, high sensitivity, and multiple sensing abilities.


On the other hand, compared to traditional planar e-textiles, fiber-shaped e-textiles have the consolidated advantages of both fibers and sensors due to their fibrous architecture with lightweight, portable, skin compliant, and easily weave properties, which therefore make fiber-shaped e-textiles the optimal wearable devices in the future.

In a recent paper published in Journal of Materials Science, researchers from the South China University of Technology at China reported the creation of an innovative fiber-shaped e-textile by knitting hierarchical polyurethane (PU) fibers and then applying a coating of silver nanowires (AgNWs) and styrene butadiene styrene block polymer (SBS). Due to the coating of AgNWs, the e-textile has a high initial conductivity, which is conducive for operation under lower voltage conditions. Because of the natural stretchability of PU fibers and textile-based structures, the as-prepared e-textiles perform a high stretchability of 140% and a high tensile sensitivity (Gauge factor = 10.3 under strain of 2%-60%, 6.3 under strain of 60%-140%).

In addition, the special hierarchical structures (i.e., a hierarchical structure composed of plentiful micro-scale PU fibers) of the e-textiles allow the wearable sensor a quick response to external pressure (response time of 13 ms & relax time of 53 ms) and a high-pressure sensitivity (0.20 kPa-1).

Due to the textile-based structures and hierarchical fibers, the e-textile exhibits good capability of detecting multiple deformations including tensile strain and pressure, which enables their full-range detection of human motions. The high stretchability, high sensitivity, and fast responses also make the e-textiles further applied in health monitoring such as pulse beating detection, scoliosis correcting, and restless legs syndrome (RLS) diagnosing.


Furthermore, the e-textile’s fibrous architecture endows the e-textiles being weaved into electronic fabric, and the sensing mechanism is further researched, after that the electronic fabric can be successfully used to map force distribution and pressure was demonstrated. Therefore, with the fiber-shaped characters, textile-based structures, and hierarchical fiber layout, the e-textiles show huge potentials in diverse wearable and smart devices in future.

The work is led by Prof. Lan Liu and her Ph.D. student Song Chen at the South China University of Technology in China. The study, highly stretchable fiber-shaped e-textiles for strain/pressure sensing, full-range human motions detection, health monitoring, and 2D force mapping was recently published in the Journal of Materials Science.



Methods To Examine Oxidatively Carbonylated Proteins And Cell Walls

Dr. C. Georgiou‚Äôs lab is internationally recognized for its expertise in the development of analytical methods for the in vivo/vitro […]

STEM Pressure: How Bills HR 321 & HR 255 Will (Or Won’t) Help Women Entering STEM Careers

Without any doubt, gender inequality continues to be one of the most frequently-debated subjects in American culture. Given the prevalence […]

Computational Time-Reversal Imaging Method For Ultrasonic Nondestructive Evaluation

To reliably access the integrity of a material or the structures made of it, we need to know the geometry […]

The Melody Of Sugar: A New Dimension In Diabetes Research

Diabetes Mellitus refers to a group of prevalent metabolic disorders manifested by the persistent rise in blood sugar level. Once […]

Eubacteria Examples

Some examples of eubacteria include¬†Streptococcus¬†pneumoniae, the bacteria responsible for strep throat;¬†Yersinia pestis,¬†thought to be the cause of the black death;¬†E. […]

Interstellar Object “Oumuamua” Traced To Potential Place Of Origin

Back in 2017, astronomers at the Haleakala Observatory in Hawaii caught a glimpse of an unusual sight. Data gathered¬†from the […]

Horseshoe Crabs Living Through A Crisis

Horseshoe crabs, or limulids, are some of the strangest of shoreline creatures. There are only four species today, three of […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?