Determining The Physical Parameters Of Rigid Porous Materials Using Ultrasonic Reflected Waves

A porous material is a medium containing pores filled with a fluid (liquid or gas). The skeletal part is usually solid. Many natural and made mediums such as rocks, soils, bones, plastic foams, fibrous materials, cement, and ceramics can be considered as porous materials.

Among these materials, such as plastic foams and fibrous, are frequently used in the automotive and aeronautic industries and in the buildings trade to reduce noise and vibration pollution. Therefore, good acoustic performance is a desirable attribute in almost all types of buildings and is particularly important for residential buildings, schools, and hospitals. The effectiveness of these porous materials in sound absorption is mainly based on their intrinsic properties.

Fig. 1 – Different parameters describing a porous medium. Credit: M. Sadouki

Among these famous properties we quote:

  •  The porosity Φ presents the ratio of the fluid volume occupied by the continuous fluid phase to the total volume of porous material. its value is between 0 and 1. (0 < φ < 1.). The porosity can be measured directly using the pressure difference technique introduced by Leo Beranek and improved by Champoux, Stinson, and Daigle.
  • The tortuosity α characterizes the sinuosity of the porous space; it represents a measure of the deviation of a line. This is the ratio of the actual distance traveled between two points, including the curves encountered, divided by the distance in a straight line. Tortuosity is used by geologists to describe pore systems in the rock. For acoustic materials, tortuosity values are between [1.00 and 3.00]. A simple direct technique based on ultrasonic wave speed measurements in a material saturated by air is proposed by F. Jean et al. for measuring the tortuosity.
  • The viscous characteristic length Λ represents the small values of the pore radius, while thermal characteristic length Λ’ corresponds to the size of large pore rays. The viscous dimension can be evaluated by the BET method plus an acoustical measurement.

The practical implementation of the direct methods for determination of these parameters can be complex and expensive.

Ultrasonic technique for the evaluation of acoustic parameters of air-saturated porous material is proposed. This technique is called an indirect or inverse method, is based on measurements of obliquely-reflected ultrasonic waves from the surface of the porous medium. The values of porosity, tortuosity, viscous and thermal characteristic lengths are obtained by minimizing between the experimental and simulated reflected signals by varying these parameters until that the difference between simulated and experimental curves will be smaller (Fig.1).

The optimized values found for the different parameters of a plastic foam sample (S2) are close to those obtained using the direct methods mentioned. A comparison between the experimental and simulated reflected signals, using the inverted values, is given in Fig. 2. The agreement between the two curves is good, which leads us to conclude that the proposed method is efficient, fast and inexpensive for the complete characterization of the porous medium saturated with air.

Fig. 2 – The optimized values of the porosity, tortuosity, viscous and the ratio of the viscous and thermal characteristic lengths of the sample (S2) for different angles of oblique incidence. Republished with permission from Elsevier from: https://doi.org/10.1016/j.apacoust.2017.12.010
Fig. 3 – Comparison between the experimental and simulated reflected signals using the optimized parameters found for the sample (S2) in different angles of oblique incidence. Republished with permission from Elsevier from: https://doi.org/10.1016/j.apacoust.2017.12.010

These findings are described in the article entitled Experimental characterization of rigid porous material via the first ultrasonic reflected waves at oblique incidence, published in the journal Applied Acoustics. This work was led by M. Sadouki in collaboration with Prof. R. Panneton and Dr. K. Verdiére from the Acoustics Laboratory of the University of Sherbrook.

About The Author

MS
M. Sadouki

M. Sadouki is a research scientist at the Université de Sherbrooke, Department of Civil Engineering.

Speak Your Mind!

READ THIS NEXT

Grad Student Solves Quantum Verification Problem

Since its theoretical inception in the 1980s, quantum computing has been touted as the next great leap in information technology. By exploiting the strange properties of quantum particles, quantum computers could theoretically perform operations that would be impossible or take an extremely long time on a classical digital computer. However, despite recent advancements in quantum […]

Analysis And Simulation Of Earthquake Ground Motion Records

Earthquakes occur every day, everywhere since the earth has existed. The main reason for earthquakes is the main tectonic borders of convergent or divergent plate’s movements. Due to the convection currents in the mantle, plates move with respect to each other on the lithosphere like sailing on the sea. A large number of the earthquakes […]

Putting Visual Information Into Context

The cerebral cortex is the seat of advanced human faculties such as language, long-term planning, and complex thought. Research over the last 60 years has shown that some parts of the cortex have very specific roles, such as vision (visual cortex) or control of our limbs (motor cortex). While categorizing different parts of the cortex according […]

Novel Nanotechnology For The Practical Application Of Aqueous Sodium Ion Capacitors

In the age of post-lithium-ion batteries featuring dilemmas including rising demands, a sharp decline in lithium reserves, and severe safety issues, aqueous energy storage systems (AESSs) demonstrate their advantages due to their low cost and excellent safety performance in nature. By replacing organic solvents adopted by common lithium-ion batteries (LIBs) with aqueous electrolytes, AESSs, such […]

Towards Self-Powered Wearables: An Improved Approach For Wrist-Worn Energy Harvesting

Nowadays, the wearable tech scene is booming all over the world. These have been very well received in the sports, healthcare, and entertainment industries. People are interested in such a product (wearable) that is always on, requires no attention, and never needs to be charged; simply wear and forget. The human body is an abundant […]

Can Trigger Warnings Help People Regulate Their Emotions?

Published by Izzy Gainsburg Department of Psychology, University of Michigan These findings are described in the article entitled Trigger warnings as an interpersonal emotion-regulation tool: Avoidance, attention, and affect depend on beliefs, recently published in the Journal of Experimental Social Psychology (Journal of Experimental Social Psychology 79 (2018) 252-263). This work was conducted by Izzy […]

Using Machine Learning To Study The String Landscape

Is fundamental physics unified into a single theory governing all known phenomena, or are we forced to accept a fractured state of affairs where different phenomena are addressed by different theories? This question has long been of first importance to theoretical physicists. Einstein, for example, spent many of his later years in search for a […]