Destroying Cancer Cells Through Cooling And Warming With A Novel Nanoplatform

Chemotherapy is widely used to treat cancer patients in the clinic. During administration, toxic chemo-drugs travel through the body, killing cancer cells but also affecting fast-growing healthy cells, including blood-forming cells in the bone marrow, hair follicles, cells in the mouth, digestive tract, and reproductive system. Damage to these healthy cells will eventually cause undesired side effects, like anemia, easy bruising and bleeding, hair loss, nausea and vomiting, appetite changes, constipation and others [1,2].

Stimuli-responsive drug vehicles have been developed to avoid those potential side effects and improve the safety and efficacy of chemotherapy. Controlling drug release under external stimuli (e.g., laser, ultrasound, and electromagnetic field) enables localization of the chemo-drug to the targeted cancer cells. However, most responsive strategies are still not clinically approved or applied to cancer patient treatment, possibly because suitable instruments for producing those external stimuli are not well developed [1].

Cryosurgery (also called cryotherapy or cryoablation) has been clinically applied to treat various diseases, including cancer, by destroying diseased tissues with cooling or freezing [3]. Designing around this clinically used external stimulus, Wang et al., for the first time, have developed cold-responsive nanocarriers to deliver and control the release of drug at the tumor area when the temperature is lowered below ⁓ 10°C [4].

First, a mixture of polymers — pluronic F127 (PF127), poly(N-isopropylacrylamide-co-butylacrylate) (PNIPAM-B), chitosan-modified PF127 (PF127-chitosan), and hyaluronic acid (HA) — was optimized to form the nanocarriers through a simple double emulsion method (Figure 1a). These nanocarriers are stable at room or body temperature with a size of ⁓100 nm, while quickly “melting” at low temperature. This is mainly because of the thermo-responsive capacity of PNIPAM-B. The polymer is hydrophobic at room or body temperature, which can help to maintain the structure of the nanoparticles, but becomes hydrophilic at cold temperature, resulting in irreversible disassembly of the nanostructure (Figure 1b).

Figure 1. Synthesis and mechanism of cold-responsive nanoparticle for drug delivery to treat cancer. Reprinted from [4] with permission of Elsevier.
The cold-responsiveness of the nanoparticles has been extensively characterized both outside and inside cells. Approximately 80% of encapsulated chemo-drug (in this study, irinotecan) can be released from nanoparticles within several minutes during cold treatment, but the release of the drug is minimal at body temperature. This could help to reduce the side effects of the chemo-drugs as the drug can be precisely released at tumor area by controlling the tumor temperature.

Since cancer stem-like cells (CSCs) are posited for the many failures of chemotherapy due to their high capacity of drug resistance, HA was modified on the surface of the nanoparticles for targeted delivery of chemo-drugs to CSCs. HA uniquely binds with the variant CD44, a surface marker that overexpressed on many types of CSCs. This may help to deliver more chemo-drugs into the CSCs to enhance the anti-tumor/CSC capability of the nanoparticles.

To further improve the anti-CSC and cancer cell capability of irinotecan, a small molecular dye, indocyanine green (ICG), was co-encapsulated into the nanoparticles for photothermal warming under near-infrared (NIR) laser irradiation. This photothermal effect, thermal energy (heat) produced by excitation of the dye, could enhance the cytotoxicity of chemotherapeutic drugs [5]. Moreover, severe damage to the cancer cells/CSCs morphology was observed by combining both cooling and warming.

This concept is further confirmed by in vivo animal studies. Tumor-bearing mice were first treated with nanoparticles through intravenous injection. After 12 hours, tumors were cooled with ice and then irradiated with NIR laser (Figure 1c). This combination technology exhibits the best anti-tumor capacity, drastically shrinking the tumors and lowering the percentage of CSCs in the mice comparing to all other control groups.

The work is significant as it combines new, innovative nanomedicine with existing cancer treatment, which is important for potential clinical application. The excellent anti-tumor capacity of this method shows great promise for safer and more effective cancer treatment. Moreover, the team is investigating more applications of these novel cold-responsive nanocarriers, such as cell and tissue banking.

These findings are described in the article entitled Enhanced cancer therapy with cold-controlled drug release and photothermal warming enabled by one nanoplatform, recently published in the journal Biomaterials. This work was conducted by Hai Wang, Pranay Agarwal, Yutong Liang, Jiangsheng Xu, Gang Zhao, Katherine H.R. Tkaczuk, Xiongbin Lu, Xiaoming He from the University of Maryland, Ohio State University, University of Science and Technology of China, and Indiana University School of Medicine.


  1. M.A.C. Stuart, W.T. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, Emerging applications of stimuli-responsive polymer materials, Nature materials 9(2) (2010) 101.
  2. N. Carelle, E. Piotto, A. Bellanger, J. Germanaud, A. Thuillier, D. Khayat, Changing patient perceptions of the side effects of cancer chemotherapy, Cancer 95(1) (2002) 155-163.
  3. A.A. Gage, Cryosurgery in the treatment of cancer, Surgery, gynecology & obstetrics 174(1) (1992) 73-92.
  4. H. Wang, P. Agarwal, Y. Liang, J. Xu, G. Zhao, K.H. Tkaczuk, X. Lu, X. He, Enhanced cancer therapy with cold-controlled drug release and photothermal warming enabled by one nanoplatform, Biomaterials 180 (2018) 265-278.
  5. H. Wang, P. Agarwal, S. Zhao, J. Yu, X. Lu, X. He, A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of theranostic agents, Nature communications 6 (2015) 10081.

About The Author

Hai Wang

Hai is a research scientist at the University of Maryland and Ohio State University.

Xiaoming He

Xiaoming “Shawn” He is a Ph.D. Professor at the Fischell Department of Bioengineering, Greenebaum Comprehensive Cancer Center, University of Maryland. His research interests are bioinspired multiscale materials and devices for tissue regeneration and cancer theranostics.

Speak Your Mind!


Scientists Create Incredible 3D Models Of The Scene In Which Images Were Taken

Here is a fun experiment to do: Find a room in your house or apartment that only has one window. Seal off the room so that it is as dark as possible. Next, punch a tiny pinhole into a large sheet of cardboard, and affix it to the window. If done correctly, the rays of […]

A Glimpse Into The Bizarre And Untouched Ecosystem Beneath Antarctica

There are many species that exist in the world. We see it in the diversity among the numerous environments we explore, from deserts to icy tundras. We know that there were many species that have gone extinct throughout the history of the Earth. And yet, we are not close to discovering many of the species […]

Your Subjective Age Is More Important Than Your Actual Age, Study Finds

Physical and mental health is a factor of subjective age (the age you feel). As one age naturally, the subjective age is seen to adopt its own timescale which most of the times does not really coincide with the actual age. Some people feel older and some younger than their real age. These days subjective […]

Climate Change-Driven Landslides Can Enhance Carbon Dioxide Emissions

In an earlier post, we showed that global warming can cause more intense rainfall (and hurricanes, and typhoons) across the globe and, consequently, more landslides. Perhaps you would not expect it, but rainfall-induced landslides and soil erosion have the potential to release large amounts of CO2 in the atmosphere, which, in turn, can boost the […]

Can Immunotherapy Conquer Triple-Negative Breast Cancer?

Triple-negative breast cancer (TNBC) is a subtype of breast cancer, the most common cancer in women. TNBC is clinically negative for expression of the estrogen receptor (ER) and progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2). This disease is highly aggressive and lacks effective targeted therapies. Currently, chemotherapy is the only […]

The Geographic Regions Of The World

The geographic regions of the world can be divided into: Africa, Asia, Central America, Eastern Europe, European Union, Middle East, North America, Oceania, South America, and the Caribbean. There are many ways to organize the world and every single country in it. One of the ways in which to do that is by geographic regions. […]

Fighting Histoplasma Capsulatum Infection With IFN-γ Macrophage Activation

Unlike opportunistic fungal pathogens, Histoplasma capsulatum can infect and cause disease in otherwise healthy individuals. Infections result from inhalation of infectious fungal conidia (spores) following disturbance of soils where it grows as a mycelium. In the lung, exposure to the mammalian body temperature triggers the conidia to convert into pathogenic yeast cells which invade phagocytic […]