ADVERTISEMENT

Computer-based Technology As An Anticancer Agent In Cervical Cancer Cells

A major stumbling block in the fight against cancer remains the identification of novel anticancer compounds that possess cell death-inducing properties in cancer cells leaving non-cancer cells unaffected. Furthermore, researchers now have access to computer software tools including computational simulations for molecular- and cellular modeling. Scientists are now using drug discovery software to identify anticancer compounds based on 3D models of receptors and proteins these compounds bind to. These computational approaches for designing and identifying compounds based on structure-activity relationships are referred to as in silico approaches. These promising compounds can then be synthesized by chemists and scientists so that it can be evaluated in laboratory experiments.

A metabolite of 17β-estradiol naturally found in the body, 2-methoxyestradiol, showed tremendous potential as an anticancer compound by inducing cell death (apoptosis) in cancer cell lines, in rodent trials, and in human trials. However, 2-methoxyestradiol is broken down too quickly by the body. Thus, only small amounts of 2-methoxyestradiol are available to enter the bloodstream and exert anticancer activity in the body. This resulted in the in silico-design of several new compounds based on the modification of the 2-methoxyestradiol structure with additional ethyl- and sulfate groups to effectively induce cell death in cancer cells at reduced concentrations.

ADVERTISEMENT

This was accomplished by making 3D simulations of how the in silico-designed compounds bind to the target proteins (carbonic anhydrase and tubulin). A study published by Visagie, et al (2016) published in Biological Research evaluated if an in silico-designed compound, 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),1 5-tetraen-17-ol (ESE-15-ol) (180 nM) is as effective in killing cancer cells as its design intended compared to the parent molecule, 2-methoxyestradiol (1 µM) in cervical cancer cells. Studies indicated that ESE-15-ol does indeed induce apoptosis and dysfunction in the cell cycle progression which is responsible for cell division. Moreover, the study found that ESE-15-ol exposure resulted in cell cycle abnormalities and apoptosis induction at a considerable lower concentration compared to cells exposed to the original compound, 2-methoxyestradiol.

Research published in Cell & Biosciences (2015) and in PlosOne (2013) demonstrated that these in silico-designed sulphamoylated estradiol derivatives induce apoptosis just like the parent compound, 2-methoxyestradiol. In a subsequent study published in PlosOne (2017), we reported that a sulphamoylated compound, 2-ethyl-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrane-3,17-diyl bis(sulphamate) (EMBS) decreased cancer proliferation, induced biphasic reactive oxygen species (ROS) production, damaged the DNA and resulted in a aberrational cell division process resulting in apoptosis.

Furthermore, this study demonstrated that ROS and c-Jun N-terminal kinase (JNK)-signalling are essential for EMBS-signalling in breast cancer cell lines. We are currently identifying the specific ROS required for the cell death signaling exerted by the sulphamoylated estradiol compounds in various tumourigenic cell lines. Secondly, the upstream mode of action used by the sulphamoylated estradiol compounds leading to ROS production will be explored as well as subsequent downstream targets resulting in apoptosis induction. This will contribute to what scientists and clinicians know regarding the oxidative-stress dependent signaling used by compounds that cause cell cycle abnormalities in cancer cells.

In conclusion, structure-activity relationship software was successfully used to design compounds that destroy cancer cells and induce apoptosis in several cancer cell lines. Furthermore, lower concentrations could be used to induce equivalent effects or even superior effects when compared to the parent molecule. Subsequent studies have found that these compounds destroy cancer cells utilizing a mode of action that is completely dependent on the generation of ROS and oxidative stress. This suggests a novel oxidative stress-dependent mode of action for in silico-designed sulphamoylated derivatives that cause cell cycle abnormalities.

ADVERTISEMENT

These findings are described in the article entitled In vitro assessment of a computer-designed potential anticancer agent in cervical cancer cells, published in the journal Biological Research. This work was led by Michelle Visagie from the Faculty of Health Sciences, University of Pretoria.

References:

  • Visagie MH, Jaiswal SR, Joubert AM. In vitro assessment of a computer-designed potential anticancer agent in cervical cancer cells. Biological Research 2016; 49(43).
  • Visagie MH, van den Bout I, Joubert AM. A bis-sulphamoylated estradiol derivative induces ROS-dependent cell cycle abnormalities and subsequent apoptosis. Plos One 2017; 12(4): e0176006.
  • Visagie MH, Birkholtz LM, Joubert AM. A 2-methoxyestradiol bis-sulphamoylated derivative induces apoptosis in breast cell lines. Cell & Biosciences 2015: 5(19).
  • Visagie M, Theron A, Mqoco T, Vieira W, Prudent R, Martinez A, Lafanechère L, Joubert A. Sulphamoylated 2-methoxyestradiol analogues induce apoptosis in adenocarcinoma cells. Plos One 2013: 5(9): e71935.

Comment (1)

Comments

READ THIS NEXT

Amazonite: Green Mineral Named After The Amazon River

The Amazonite stone is a green mineral that is named after the Amazon River in South America. This green mineral […]

What Is The Coldest And Hottest Planet?

The hottest planet in the solar system is Venus with an average temperature of 864 degrees Fahrenheit or 462 degrees Celsius. […]

Minimizing Hand Foot And Mouth Disease Effects With Flavonoid Compounds

Hand Foot And Mouth Disease (HFMD) typically affects children and is caused by human enteroviruses. Common symptoms of HFMD include […]

Comparability Of Meteoric Water Lines: Daily, Monthly, Or Annual Data?

The stable isotopes of hydrogen (δ2H) and oxygen (δ18O) have been widely applied in hydrology. The equation relating δ2H to […]

How To Calculate Antilog Easily

If you’re wondering what an antilog is and how to calculate it, you actually probably already know a little about […]

Water Vapor Radiative Effects On Spain

Climate is an extremely complex system in which all elements are interconnected. Among them, water is one of paramount importance. […]

Consumption Of Raw Seafood Causes Crippling Infection in Man’s Hand

When fulfilling a sushi craving, most people don’t consider any risks associated with the consumption of raw seafood; after all, […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?