ADVERTISEMENT

Climate Change-Driven Landslides Can Enhance Carbon Dioxide Emissions

In an earlier post, we showed that global warming can cause more intense rainfall (and hurricanes, and typhoons) across the globe and, consequently, more landslides. Perhaps you would not expect it, but rainfall-induced landslides and soil erosion have the potential to release large amounts of CO2 in the atmosphere, which, in turn, can boost the climate change.

Soils store from two to four times the amount of organic carbon currently in the atmosphere, most of which is contained in the first 1 meter below the surface, for example in the form of plant roots and organic nutrients. An important part of soil carbon is stored in tropical forests (see our post here), and another in peatlands, which are abundant at high latitudes but also in tropical regions, and are constituted almost entirely of organic matter, which accumulates faster than it decomposes thanks to special anoxic conditions in the subsoil.

ADVERTISEMENT

Soil plays an important role, together with the oceans, in counterbalancing the anthropogenic CO2 emissions. In fact, the terrestrial biosphere can absorb 20% of fossil-fuel CO2 emissions, a recent study on Nature Geoscience says.

Deforestation and drainage to harvest wood and get land for agriculture or construction causes a direct loss of carbon stocks, but also makes the soil weaker and more susceptible to erosion and landsliding. The decomposition of organic matter in disturbed soils and landslide debris, both those lying along the slopes and those being transported through the water system, causes further emission of CO2 in the atmosphere. The complex effects of climate change, including temperature rising and more extreme weather conditions, are likely to enhance the emissions by causing an increase of landslides and soil erosion.

And the effects, unfortunately, persist for long time, even if the slopes are artificially revegetated.  Dr. Les Basher and colleagues from the Landcare Research institute in Nelson, New Zealand,  showed that the revegetation of landslide sites is unable to restore the soil carbon stock completely, even decades after a landslide, resulting in a long-term net loss of carbon from the top soil layer, which is released, at least in part, in the atmosphere.

A recent study, published on Geomorphology this year, was conducted in Taiwan by Dr. Jasmin Schomakers of the University of Natural Resources and Life Sciences, Vienna, Austria, and by Dr. Shih-Hao Jien and colleagues from the National Pingtung University of Science and Technology in Taiwan. In their study area typhoons are frequent and cause a large number of landslides, besides property destruction and loss of lives. The researchers observed that after landslides completely removed the vegetation, the landslide scars were colonized by Miscanthus floridulus, a perennial tropical grass, which thrived for about 15-20 years. The soil carbon stocks took a while to increase significantly, and after 20 years they were still low. Later on, bamboo species invaded, and thanks to their fast growth, the organic carbon accumulation sped up.

ADVERTISEMENT
Soil Organic Carbon stocks (0 to 50 cm or 0 to bedrock) as a function of time since landslide disturbance, compared to a reference site. The dominant vegetation is shown (Schomakers et al., 2017).

However, even after more than 40 years, the carbon stocks were still 40% below the levels found in adjacent forests (see the figure below). As global warming is expected to cause more severe weather conditions – Dr. Schomakers says – it is possible that landslides would occur so often that the soil would not have enough time to recover, and the re-accumulated soil carbon would quickly get lost again.

Comments

READ THIS NEXT

Bees That Rob Honey from Their Neighbors Also Pick Up Dangerous Parasitic Mites

Reports over the last few decades have alerted the public to the ongoing health challenges facing honey bees, our planet’s […]

Duke University’s Top Scientific Research Of 2017: A Year In Review

Researchers at Duke University had a very busy 2017, contributing some of the years most important and notable research findings. […]

Using Remote Sensing To Measure Crop Growth And Management

In most East and Southeast Asia countries, mosaic crop production systems usually consist of relatively small land holdings ( < […]

Learning From Nature: Using Microbial Consortia To Improve Biochemical Synthesis

In the early 1900s, Henry Ford revolutionized mass production with the development of the assembly line: a method of combining […]

Potential Therapeutic Relevance For TIM-3 In Breast Cancer Patients

Since the first FDA approval of an immune checkpoint blockade (ICB) therapy in 2011, immunotherapy has increasingly become a standard-of-care […]

Photosynthesis Diagram: From Beginning To End

Photosynthesis is the process that allows plants to gather energy from the sun and transform it into energy they can […]

A New Approach For High Energy Density Li-Ion Batteries

The golden era of electric mobility may be upon us. In 2016, ~160,000 plug-in electric vehicles were sold in the […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?