Climate Change-Driven Landslides Can Enhance Carbon Dioxide Emissions

In an earlier post, we showed that global warming can cause more intense rainfall (and hurricanes, and typhoons) across the globe and, consequently, more landslides. Perhaps you would not expect it, but rainfall-induced landslides and soil erosion have the potential to release large amounts of CO2 in the atmosphere, which, in turn, can boost the climate change.

Soils store from two to four times the amount of organic carbon currently in the atmosphere, most of which is contained in the first 1 meter below the surface, for example in the form of plant roots and organic nutrients. An important part of soil carbon is stored in tropical forests (see our post here), and another in peatlands, which are abundant at high latitudes but also in tropical regions, and are constituted almost entirely of organic matter, which accumulates faster than it decomposes thanks to special anoxic conditions in the subsoil.

Soil plays an important role, together with the oceans, in counterbalancing the anthropogenic CO2 emissions. In fact, the terrestrial biosphere can absorb 20% of fossil-fuel CO2 emissions, a recent study on Nature Geoscience says.

Deforestation and drainage to harvest wood and get land for agriculture or construction causes a direct loss of carbon stocks, but also makes the soil weaker and more susceptible to erosion and landsliding. The decomposition of organic matter in disturbed soils and landslide debris, both those lying along the slopes and those being transported through the water system, causes further emission of CO2 in the atmosphere. The complex effects of climate change, including temperature rising and more extreme weather conditions, are likely to enhance the emissions by causing an increase of landslides and soil erosion.

And the effects, unfortunately, persist for long time, even if the slopes are artificially revegetated.  Dr. Les Basher and colleagues from the Landcare Research institute in Nelson, New Zealand,  showed that the revegetation of landslide sites is unable to restore the soil carbon stock completely, even decades after a landslide, resulting in a long-term net loss of carbon from the top soil layer, which is released, at least in part, in the atmosphere.

A recent study, published on Geomorphology this year, was conducted in Taiwan by Dr. Jasmin Schomakers of the University of Natural Resources and Life Sciences, Vienna, Austria, and by Dr. Shih-Hao Jien and colleagues from the National Pingtung University of Science and Technology in Taiwan. In their study area typhoons are frequent and cause a large number of landslides, besides property destruction and loss of lives. The researchers observed that after landslides completely removed the vegetation, the landslide scars were colonized by Miscanthus floridulus, a perennial tropical grass, which thrived for about 15-20 years. The soil carbon stocks took a while to increase significantly, and after 20 years they were still low. Later on, bamboo species invaded, and thanks to their fast growth, the organic carbon accumulation sped up.

Soil Organic Carbon stocks (0 to 50 cm or 0 to bedrock) as a function of time since landslide disturbance, compared to a reference site. The dominant vegetation is shown (Schomakers et al., 2017).

However, even after more than 40 years, the carbon stocks were still 40% below the levels found in adjacent forests (see the figure below). As global warming is expected to cause more severe weather conditions – Dr. Schomakers says – it is possible that landslides would occur so often that the soil would not have enough time to recover, and the re-accumulated soil carbon would quickly get lost again.

About The Author

Gianvito Scaringi

Currently a Postdoctoral Research Fellow at Charles University, Prague. Geotechnical Engineer from Italy, currently Postdoctoral Research Fellow at the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection in Chengdu, China.

Speak Your Mind!

READ THIS NEXT

Map Of The USA West Coast

Take a look at the map of the West Coast of the United States and you’ll note it is home to around 51 million people, living in vastly different cities and regions each with their own unique culture, history, landmarks, and environments. From San Diego to Seattle, the West Coast has many interesting and noteworthy […]

miR-218-5p As A New Player In Uterine Vascular Transformation During Pregnancy

The placenta is a transient organ that serves as the interface between the fetus and the mother. It has a multitude of critical roles in maintaining and protecting the developing fetus throughout the pregnancy. Specifically, it facilitates the exchange of gases, nutrients, and waste products, serves as an endocrine organ producing a number of pregnancy-associated […]

Endure Or Perish! Amphibians And Reptiles Coping With Humans And Climate

Tropical ecosystems worldwide are greatly threatened by human disturbance and climatic change, concurrently. Human and natural disturbances such as hurricanes have significant pervasive influences on animals, including changes in species density, diversity, and composition. In the past few years, hurricanes have become more frequent and intense as a result of climatic change. Following human and […]

Thermophoretic Effects On Capillary Transport Of Nanofluids

Nanofluid is a dilute suspension of particles, varying in size from 1 nm to 100 nm, suspended in a base fluid (e.g. water). Compared to base fluids, nanofluids distinctively possess superior thermophysical attributes like thermal conductivity, specific heat capacity. Hence, they can be utilized for their enhanced thermophysical properties in the narrow confinements, like heat […]

Effects Of New Oral Anticoagulant Agents In Patients With Acute Coronary Syndrome

Current studies provide evidence on the effects of new oral anticoagulants (NOACs) i.e. apixaban, rivaroxaban, and dabigatran, in patients placed on antiplatelet therapy after percutaneous coronary intervention (PCI) for acute coronary syndrome (ACS). We found that when these drugs were added to a single antiplatelet agent (i.e. P2Y12 inhibitor), there was neither an increase in […]

Origin Of Marine Organic Matter Influences Metal Effects In The Early Life Stages Of Mussels

Contamination of the aquatic environment has been a growing problem mainly due to population and industrial increase. Often, toxic substances (known or not!) are released indiscriminately, and among them are metals. Once present in the aquatic environment, metals may cause toxic effects, especially in the early life stage of aquatic organisms. Of all marine organisms, […]

Significance And Analysis Of Platelet-Derived Microparticles 

Platelet-derived microparticles (PMP) are nano-sized fragments (100-1000 nm) released from platelets under various physiological and pathological conditions (Nieuwland and Sturk 2002). Many diseases have now been found to be associated with high platelet-derived microparticles (PMP) count in blood, like myocardial infarction, acute coronary syndrome, stroke, venous thrombo-embolism, thrombocytopenic purpura, preeclampsia, fungal (candida albicans) sepsis, hereditary […]