ADVERTISEMENT

BIOCARB-4-FOOD: Exploring New Marine Food Ingredients

Food science and technology has experienced dramatic changes during the last century, which have been partly driven by new lifestyle trends and eating habits, as well as more specific consumer demands. It has been estimated that food consumption will grow approximately 70% by 2050 [1], while, on the other hand, natural resources are becoming scarcer. On top of that, 1/3 of all food produced globally is lost or wasted [2].

In this context, circular economy strategies which aim to promote more efficient utilization of natural resources, while reducing the environmental impact of production processes, are currently being pushed by worldwide authorities. Furthermore, the food industry is actively working toward the development of novel food ingredients, which, apart from their structuring roles, can provide additional functionalities such as health benefits, replace harmful components such as trans fats, or help to improve the quality and preservation of packaged foods. Thus, exploring under-utilized resources for the extraction of functional food ingredients is currently a hot topic within food science research.

ADVERTISEMENT

One example of food ingredients widely used within the food industry is carbohydrates. Depending on their structure and properties, carbohydrates can have a wide range of functionalities when used as food ingredients (thickeners, gelling agents, emulsifiers, flocculants, lubricants, bulking and swelling agents, emulsion and suspension stabilizers, adhesives and binders, encapsulants, additives for low-calorie products, etc). Seaweeds and seagrasses are a valuable and under-exploited source of carbohydrates, as well as bioactive compounds such as polyphenols or carotenoids. Some examples of seaweed carbohydrates are agar, carrageenan, and alginate, which are commonly used in the food industry as gelling and thickening agents due to their particular gelation characteristics.

Current industrial procedures used by companies for carbohydrate extraction from seaweeds are highly inefficient in terms of processing time, water, and energy requirements. Furthermore, the remaining biomass (generally much more than 50% of the initial material) is used as compost or is simply disposed of as organic waste. The European project BIOCARB-4-FOOD [3] aims to investigate novel, environmentally-friendly and efficient extraction techniques (ultrasounds, microwaves, enzymes, and their combinations) to obtain novel carbohydrate-based extracts from seaweeds and seagrasses. Furthermore, the biomass remaining after the extractions will be valorized for the production of cellulosic fibers, useful for the development of food packaging materials. The project is expected to contribute to improved process efficiency, development of ingredients with high added value from already commercialized seaweed species and from under-exploited sources which can positively impact in the competitiveness of seaweed, food, and non-food companies at EU scale by a better valorization of raw materials.

In this context, our recent paper published in the journal Algal Research in 2019 [4], explores the possibility of producing less purified agar-based extracts from the seaweed Gelidium sesquipedale by means of more cost-efficient and environmentally friendly extraction protocols. Agar is a carbohydrate that constitutes the main structural component in the cell walls of certain species of red seaweed, and it is widely used in the food industry and in the microbiology field. The properties of agar (i.e. gel strength, the degree of purity, color, etc) can be adapted by using different seaweed species and by modifying the extraction process. The extraction process currently used by the industry to extract agar consists of a very complex procedure, involving the application of alkaline pre-treatments, followed by time- and energy-consuming high-temperature and high-pressure treatments, filtration processes at high temperatures, and several freeze-thawing cycles.

We have explored the possibility of replacing the conventional hot water extraction process with a significantly shorter extraction protocol consisting of the combination of hot water and ultrasound-assisted extraction. Furthermore, the effect of eliminating the alkaline purification step to produce non-purified agar fractions which may contain bioactive compounds was also investigated. Our results showed that the combined treatment reduced the extraction time 4-fold without significantly affecting the agar extraction yield. Furthermore, the less purified extracts generated by suppressing the alkali treatment contained additional components such as proteins, polyphenols, and minerals. As a result, the agar-based extracts presented antioxidant capacity, which could be interesting for their application as bioactive food ingredients, and led to the production of brownish softer gels.

ADVERTISEMENT

We have therefore developed a simplified methodology based on the combination of heat and sonication, avoiding the use of alkaline pre-treatments and reducing the total extraction time, while maintaining acceptable extraction yields with regards to the conventional method. This protocol allows us to produce cost-effective, agar-based extracts with potential applications within the food industry. Further research is currently being carried out to optimize the process parameters in terms of maximizing the extraction yields and adapting the agar properties to specific applications. Additionally, the same strategy will be applied to other types of seaweed carbohydrates with interest in food applications.

These findings are described in the article entitled Production of unpurified agar-based extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols, recently published in the journal Algal Research.

References:

  1. FAO, (2009): http://www.fao.org/news/story/en/item/35571/icode/
  2. FAO, (2009): http://www.fao.org/food-loss-and-food-waste/en/
  3. https://www.biocarb4food.eu/
  4. Martínez-Sanz, M., Gómez-Mascaraque, L. G., Ballester, A. R., Martínez-Abad, A., Brodkorb, A., & López-Rubio, A. (2019). Production of unpurified agar-based extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols. Algal Research, 38, 101420.

Comments

READ THIS NEXT

Faster Learning Control Schemes Can Help To Address Cybersecurity Economically

We have many computer “hosts” in our lives, from personal computers to printers to cell phones to smart refrigerators. On these […]

The Parts Of A Flower With Diagrams

The parts of a flower can be broken up into the pistil (stigma, style, and ovary) and stamen (anther and […]

Computational Mass Spectrometry Deepens The Understanding Of Metabolisms

Metabolomics aims at providing information about “metabolome,” the comprehensive small molecules of living organisms, which has been used for elucidating […]

How To Store Hydrogen, A Possible Future Fuel To Tackle The Energy Crisis And Environmental Pollution

The molecular dihydrogen (H2) is considered as a zero-emission fuel, as it produces water vapor when it burns, causing no […]

On/Off Switching During The Synthesis Of Complex Sugars

Glycosylation is the ubiquitous, highly-regulated process by which carbohydrate is added to proteins and lipids to form glycoconjugates (glycans). These […]

Measuring Long-Term Climate Change In North America During The Common Era

Recent floods and droughts have resulted in billions of dollars of damages and loss of life. The occurrence of these […]

A New Decision Support System To Quantify The Soil Sealing Impacts On Soil Ecosystem Functions

Soil sealing is one of the worst global land degradation problems and is mainly related to diffuse urbanization and misplaced […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?