An Important Community In Restoration Efforts To Protect The American Chestnut Tree

The American chestnut once dominated the eastern forests of the United States. A fungal pathogen, Cryphonectria parasitica, was introduced to the US in the early 20th century and within a few decades, the pathogen now known as the chestnut blight killed an estimated 4 billion chestnut trees.

Over the last century, there have been a number of efforts to confer blight resistance and restore the chestnut, including hybridization and backcross breeding programs. Current restoration plans also include the very real potential for using a genetically engineered version of the once beloved tree as part of an integrated restoration plan. Because the goal of planting genetically engineered American chestnut (GEAC) tree would be restoration, the hope is that GE trees will breed with relic wild types, hybrids, and backcrossed individuals and would ultimately restore the chestnut to the eastern forests.


While the GEAC is not engineered to spread any more quickly than wildtype chestnuts, that it is meant to outcross and spread freely at all makes it different from GE plants that are currently being planted and managed for containment. This potential for spread is particularly important in the context of spreading across sovereign tribal boundaries. As such, one important set of stakeholders is the Indigenous communities living in the chestnut’s historic range.

Indeed, the primary sites of research, current field trials, and proposed early plantings of the GEAC are all in the heart of contemporary and traditional territories of the Six Nations of the Haudenosaunee Confederacy of Central and Upstate New York. As part of their outreach, GEAC proponents deploy narratives about its historical importance to Native American communities, suggesting that its restoration should also be important to Indigenous communities. However, the chestnut’s disappearance coincides with major cultural disruption and loss in Haudenosaunee communities, such that virtually no living memories of the chestnut tree survive as part of cultural practice.

The active cultural revitalization efforts within Haudenosaunee communities now, in some ways, parallel ongoing chestnut restoration efforts. Could, therefore, the restoration of a once ubiquitous tree actually support ongoing cultural revitalization efforts within Haudenosaunee communities? Drawing on semi-structured interviews and participant observation of meetings and workshops, we explored this question through the framework of reciprocal restoration, which attends specifically to Indigenous considerations in ecological restoration scholarship and practice. Below outlines how chestnut restoration efforts that use a GE tree stack up against the dimensions of reciprocal restoration.

Language and culture revitalization: Language revitalization is an important and ongoing part of broader cultural revitalization efforts in Haudenosaunee communities. Haudenosaunee scholars and community leaders also conducted their own research to explore how the chestnut features in traditional stories, and to develop a linguistically and culturally accurate representation of the GEAC so elders can make sense of the project through their own worldview.


Customary use: The chestnut tree was once used for medicine and for food, and Haudenosaunee community members communicated complex perspectives about potentially using the GEAC in these traditional ways. Elders want time to investigate the efficacy of the GEAC as medicine, and may be interested in consuming the chestnuts as food and the wood for woodworking.

Cultural keystone species: Cultural keystone species feature centrally in subsistence and spiritual practices. While there is evidence that the chestnut tree was once a part of Haudenosaunee cultural practice, none of the Haudenosaunee leaders that we spoke with recalled meaningful memories of the American chestnut tree.

Traditional ecological knowledge (TEK): TEK offers important biological insights and a cultural framework for environmental problem solving that incorporates knowledge and values that are passed down through generations. While the chestnut has been absent for generations, and traditional knowledge about it has all but vanished, new relationships could lead to new stories in ways that are consistent with Haudenosaunee principles of reciprocity. Moreover, TEK offers both specific examples of knowledge bases to include in restoration processes, as well as alternative frameworks for approaching restoration more broadly.

This alternative perspective disrupts rather mechanistic approaches to restoration — particularly true of species restoration that includes a genetically engineered species — and instead sees humans as one of many beings that contribute to the well-being of a system. A pivotal question thus emerges: does the use of a genetically engineered chestnut represent the ultimate mechanistic view of nature, or can such intense attention to restoring one species be an example of responsible caregiving?

Spiritual responsibility: The GEAC raises a number of questions about spiritual responsibilities. One is ecological restoration a form of spiritual caregiving, and, if so, could a genetically engineered tree serve within the umbrella of this responsibility? Or is restoration altogether a managerial perspective that violates Original Instructions? In the end, while the debate about restoration persists, the broad (with exception) majority of participants do not currently think that the GEAC is consistent with their spiritual responsibilities.


Kincentric relationships: Haudenosaunee participants understand restoration to be more about restoring relationships than restoring species, and have expressed concern that the current approach to chestnut restoration focuses too specifically on returning the form of the tree to the forest and not enough on the functional relationships with the tree. To the community members that we spoke with, however, the chestnut trees are relative strangers. If this is how community members react to the prospect of chestnut restoration, it seems unlikely that chestnut restoration could reflect or strengthen kincentric relationships with the environment.

As new genetic technologies emerge to mitigate global environmental change, nuanced frameworks such as reciprocal restoration are required for understanding how novelty meets tradition, and for creating space where Indigenous perspectives are centered and respected. Ongoing efforts to restore the American chestnut tree, will likely represent the first application of genetically engineered species to spread in the environment, offers instructive insights for other emerging cases of genetic engineering for conservation and restoration.

The chestnut case highlights which dimensions of reciprocal restoration may be foundational to understanding Indigenous perspectives on using genetic engineering for conservation and restoration. While academic scientific approaches to conservation and restoration remain the primary worldview for decision-making, attending to dimensions of reciprocal restoration at critical junctures may create space for affected Indigenous communities to preserve important spiritual responsibilities and kincentric relationships, thus preserve important elements of sovereignty.

These findings are described in the article entitled The genetically engineered American chestnut tree as opportunity for reciprocal restoration in Haudenosaunee communities, recently published in the journal Biological Conservation.



Sequence-Defined Molecules Can Be Used To Create 2D Nanomaterials

The unique sequence-defined property endows materials scientists with the ability to precisely tailor and adjust the combination of functional groups […]

A Few Drinks May Alter Your Memories More Than You Think, Alcohol Hijacks Neural Pathways To Cause Cravings

Many people have had hangovers from drinking too much alcohol, and yet despite the unpleasant consequences the morning after a […]

A Technique For Predicting How To Better Grow Rare, Endangered, And Recalcitrant Plants

Many people have heard about two seemingly disparate concepts: recalcitrant (or difficult to grow) plants and liquid chromatography. Plant tissue […]

Map Of The California Coast: Northern And Southern

The map of the California coast will amaze you just how many miles of beautiful beaches both in northern and […]

Slowing Population Growth Is Important And Immigration Can Help

A future with unabated climate change is a scary one. It is a future of rising seas and amplified extreme […]

Where Do You Come From? Tracking Sediment Provenance Through Lead Isotopes

The quest to understand where something has come from pervades many avenues of science. One important field of geological research […]

Developing Gold Nanoparticle-embedded Dielectric Thin Films

Research on noble metal nanoparticles has always remained interesting because of their optical and electronic properties. Gold nanoparticles (AuNPs), in […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?