The Unusual Cellulose Utilization System Of Cytophaga hutchinsonii

Cells of C. hutchinsonii growing on and digesting cellulose filter paper. (A) A spreading colony of C. hutchinsonii on filter paper. Clear zone in the center indicates complete digestion of cellulose. Cells were grown on Stanier agar with filter paper as sole carbon and energy source for 10 days at 25 oC. (B) Scanning electron micrograph of C. hutchinsonii cells digesting filter paper. Image source: Figure legend: From Zhu, Y. & McBride, M.J. Appl Microbiol Biotechnol (2017)

Cellulose, a component of the plant cell wall, is the most abundant renewable organic resource on Earth. Cellulose is insoluble and highly resistant to degradation because of its crystalline structure. Microorganisms have evolved diverse strategies to digest cellulose.

ADVERTISEMENT

Some secrete soluble extracellular cellulases that function synergistically (noncomplexed cellulase systems) and some produce cellulosomes composed of multiple cellulases and cellulose-binding modules (complexed cellulase systems) to digest cellulose efficiently, producing glucose or short oligomers extracellularly. Cellulases involved in these two strategies include endoglucanases and exoglucanases. The endoglucanases attack cellulose in the amorphous regions and release free ends. The exoglucanases bind to these ends and processively cut cellulose chains and are essential in the breakdown of cellulose in the crystalline regions.

Cytophaga hutchinsonii is a soil gliding bacterium that can digest cellulose. It appears to use a different cellulose utilization mechanism from the noncomplexed and complexed cellulase systems described above. The cellulases of C. hutchinsonii are cell-associated but this organism does not have cellulosomes. More interestingly, only endoglucanases but no exoglucanases were predicted according to the genome analysis. C. hutchinsonii appears to transport cellooligosaccharides, the initial cellulose digestion products, across its outer membrane and digests these internally in the periplasm. Unlike the other cellulolytic microorganisms, cellulose degradation products do not accumulate extracellularly while cells of C. hutchinsonii digest cellulose.

ADVERTISEMENT

We found that the novel type IX protein secretion system is required for C. hutchinsonii cellulose utilization. Five endoglucanases (Cel5A, Cel9A, Cel9B, Cel9D, and Cel9E) are predicted to be delivered by the type IX secretion system to the cell surface. These enzymes are thought to be required for cellulose digestion. We recently deleted most of the endoglucanase encoding genes and found that two periplasmic endoglucanases Cel5B and Cel9C are also essential for C. hutchinsonii cellulose utilization.

Based on all previous studies, we proposed a model for C. hutchinsonii cellulose utilization. In this model, cells attach to cellulose by using cellulose binding-proteins. The five cell surface endoglucanases perform the initial extracellular digestion of cellulose, producing cellooligosaccharides. The cellooligosaccharides are transported across the outer membrane and further digested in the periplasm by Cel5B and Cel9C, producing cellobiose and short oligomers. Periplasmic β-glucosidases complete the digestion of these products to glucose.

There are still many mysteries in C. hutchinsonii cellulose utilization. Future research will identify novel proteins involved in this process. These proteins may be useful in enhancing the conversion of plant biomass into biofuels or other valuable products in the industry.

These findings were described in the article entitled The unusual cellulose utilization system of the aerobic soil bacterium Cytophaga hutchinsonii, published in the Applied Microbiology and Biotechnology. This work was led by Yongtao Zhu from the University of Wisconsin-Milwaukee.

Written By
More from Yongtao Zhu

A Closer Look At The Surface Of Mars

The nature of many of the rocks and materials on the surface...
Read More
Opinions expressed are solely the authors and do not express the views or opinions of Science Trends nor the author's institution.
Cite this article as:
Yongtao Zhu. The Unusual Cellulose Utilization System Of Cytophaga hutchinsonii, Science Trends, 2018. Available at:
http://doi.org/10.31988/SciTrends.11333
*Note, DOIs are registered Friday weekly and therefore may not work until then.

1 Comment

Leave a Reply

Your email address will not be published. Required fields are marked *