ADVERTISEMENT

How SBA-15 Will Affect The Elimination Of Pollutants

SBA-15 is a mesoporous, silicon-based molecule. With large surface areas, pore volume, pore diameter and ordered channel structure, it has been applied widely in the fields of adsorption, catalysis, drug delivery, sensing, and so on.

Compared to MCM-41s, SBA-15 can be synthesized under a conditioned acid and has larger pore diameter, higher heat, and hydrothermal stability; however, due to the lack of necessary activity sites, further application of mesoporous nanomaterials has been limited.

ADVERTISEMENT

With the introduction of metal, metal oxide and some organic function groups, the active sites of mesoporous materials have largely increased, and their application range has also greatly expanded. (Mate Lett 2015, 145, 312-315; Mater Lett 2016,162, 110-113.)

https://commons.wikimedia.org/wiki/File:Monomodal_silica_pore-size_distributions.png; Image by Dr.BeauWebber via Wikimedia Commons is licensed under CC-BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0/deed.en

Cu/SBA-15 maintains the ordered structure of mesoporous materials and its specific surface areas, as well as enlarged pore diameters. The channels of SBA-15 could become Nanoreactors to effectively confine and control the growth of metal particles as copper nanoparticles.

Furthermore, copper nanoparticles could be highly dispersed in the matrix of SBA-15. Due to the introduction of Cu nanoparticles, channels of SBA-15 are blocked and cause partial strain to the pores; thereby, increasing mesoporous diameter and creating the new micropores.

With the rapid development of industry, a lot of heavy metal and refractory toxic organic compounds were discharged into water. Not only has it polluted the water resources, but it has also affected the health and survival of human beings. P-nitrophenol, therefore, is a typical representative of such pollutants. Cu/SBA-15, as an effective catalyst, has exhibited excellent catalytic activity and over 99.0% of p-nitrophenol has been reduced to p-aminophenol, which is a kind of potentially effective intermediate product.

ADVERTISEMENT

By increasing the reaction temperature and copper loading, the time to complete reaction shortened. In sum, we believe that, with deeper research, Cu/SBA-15 will play a more important role in the field of pollutant elimination. (J. Porous Mater 2018, 25, 207–214.)

These findings are described in the article entitled Preparation, characterization and excellent catalytic activity of Cu/SBA-15 nanomaterials, recently published in the Journal of Porous Materials. This work was conducted by Jh Wang from the Shaanxi University of Technology.

Comments

READ THIS NEXT

5 Examples Of Potential Energy In Physics And Chemistry

What is energy? There are many different kinds of energy, kinetic energy, chemical energy, heat energy, and electromagnetic energy, but […]

What Is A Sapiophile

A Sapiophile is a person who is sexually attracted to a person with intelligence. The presence of intelligence is attractive to […]

Plastic Mulch Increasing Water Consumption At Night In Croplands

Farmland as an important part of the terrestrial ecosystem inevitably affects regional ecohydrology process. Changes of terrestrial processes as the […]

What Is Osmosis?

Osmosis refers to the movement of molecules across a selectively permeable membrane. The process of osmosis has molecules spread out […]

Organoids Reproduce Metabolic Alterations Of Colorectal Cancer: A Good Tool To Choose The Best Drug Based On Tumor Stage

Colorectal cancer is considered to be one of the most commonly diagnosed cancers and it also has one of the […]

Artificial Nanodecoys For Hepatitis B

Chronic hepatitis B virus (HBV) infection places patients at high risk of death due to liver cirrhosis and hepatocellular carcinoma, […]

Clustering By Shared Subspaces: A New Framework For Data Analysis

Clustering is a fundamental data analysis technique with applications in engineering, medical and biological sciences, social sciences, and economics. For […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?