Real-time Detection Of Toxic Copper In Environment Monitoring And Public Health

Copper is an essential element in the environment and human body, but at the same time, exposure to high concentrations of Cu2+ ions will potentially lead to acute toxicity and various neurodegenerative diseases. Specifically, the U.S. Environmental Protection Agency (EPA) has set the safe limit of Cu2+ concentration in drinking water to be 1.3 ppm (~20 μM).

Therefore, for the concern of public health, it is of urgent demand for developing highly sensitive, selective, and low-cost Cu2+ sensors in environmental and biological areas. Unfortunately, conventional approaches for determination of Cu2+ ions including inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectroscopy (AAS) and fluorescence spectroscopy, generally require cumbersome instruments, sophisticated operators and time-consuming sample preparation process.

Organic electrochemical transistors (OECTs), as a new kind of organic thin-film transistor, shows high sensitivity since the device is the combination of a sensor and an amplifier, offering an interesting platform for constructing disposable, portable and real-time electrochemical sensors with high sensitivity. Attributed to the inherent advantages, like easy fabrication, good biocompatibility, low cost, flexibility, low operational voltage and stable performance in aqueous systems, OECT has shown promising applications in chemical and biological sensing including ions, dopamine, glucose, bacteria, DNA, and cell.

Recently, Dr. Lei Zheng, Dr. Hao Qu and Ph. D. candidate Can Xiong from Hefei University of Technology, China observed an interesting phenomenon that the conductivity of the organic semiconductor poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) increased by many times after the injection of Cu2+ while most of the other cations had the quite opposite effect (Fig. 2). This unusual response of PEDOT:PSS to Cu2+ was attributed to the oxidation of PEDOT:PSS film by Cu2+ as described by the following electrochemical reaction equation:

Figure 2: Selectivity measurements of the OECT devices. The channel current response to target Cu2+ ions (1 mM) relative to other metal ions, including Pb2+ (1 mM), Ba2+ (1 mM), Ca2+ (1 mM), Cd2+ (10 mM), K+ (10 mM), Na+ (10 mM), Ni2+ (1 mM), Mn2+ (1 mM), and Zn2+ (1 mM). Error bars represent standard deviations from three independent measurements (Reused with permission from Science China Chemistry)

Based on this observation, Lei Zheng, Hao Qu and Can Xiong reported the fabrication (Fig. 1a) and application (Fig. 1b) of PEDOT:PSS based OECT as an ultra-sensitive sensor for the real-time detection of Cu2+. The detection limit of the OECT device was as low as 100 nM (~ 6.5 ppb) of Cu2+, far below the requirement by the U.S. EPA limit. The ability for practical applications of the OECT device was also demonstrated for rapid and accurate determination of Cu2+ in tap water with high recovery rates (Fig. 3). The compelling performance of the PEDOT:PSS based OECT device enables it as a promising platform for simple, rapid and real-time monitoring of Cu2+ exposure for daily life, environment control, and public health.

Figure 3: Sensitive detection of Cu2+ ions in tap water. The level of real-time channel current of an OECT is proportional to the Cu2+ concentration in solution. The detection limit is as low as 100 nM of Cu2+ (Reused with permission from Science China Chemistry)

These findings are described in the article entitled Real-time detection of Cu(II) with PEDOT:PSS based organic electrochemical transistors, published in the journal Science China Chemistry. This work was led by Dr. Lei Zheng and Dr. Hao Qu and performed by Can Xiong from the Hefei University of Technology.

About The Author

LZ
Lei Zheng

Lei Zheng is a researcher at the Hefei University of Technology.

 

Hao Qu

Hao Qu is an associate professor and DNA researcher at the Hefei University of Technology · School of Biological and Medical Engineering.

CX
Can Xiong

Can Xiong is nanomaterials and electrochemical analysis researcher at the  Hefei University of Technology · School of Food Science and Engineering.

Speak Your Mind!

READ THIS NEXT

Bizarre Fossil Wasps Found In Amber From Myanmar From Ca. 99 Mio. Years Ago Point Toward Later Plate Collision Of Asia And The West Burma Plates Than Previously Assumed

Fossil amber from present-day Myanmar – commonly called Burmese amber – continuingly yields amazing new discoveries. Among these are three new wasp species with bizarre, hybrid morphology, showing body features of ants, wasps, beetles, and grasshoppers. The recently discovered three new wasp species were just discovered a few months ago and are from the extinct […]

This Group Of Diving People Have Evolved Larger Spleens To Spend More Time Underwater

A study recently published in the journal Cell has found that the Bajau people, who live in Southeast Asia, have evolved a mutation to their DNA which gives them larger spleens. The larger spleens the Bajau people have assist them in diving underwater, helping them hold their breath for longer durations than most people. Most […]

Sintering And Densification In Nuclear Power

Like most power plants, nuclear power plants heat water to generate electricity. But nuclear power plants use heat from splitting atoms rather than burning fossil fuels. Thus, they provide energy without significant carbon emissions. However, nuclear power is facing economic challenges due to ever-stricter and more expensive safety requirements and cheap natural gas. This means […]

Common Pains: Study Indicates Same Genes May Play A Role In Neuropathic And Chronic Widespread Pain

Neuropathic pain has much in common with chronic pain that may occur in several bodily areas. This may also include the responsible genes. There are pains that are self-sufficient. They have lost their function and raise alarm although the danger has been banned, the injury has healed for weeks, the wound has closed, the muscle […]

Precious Resource Basins: Facilitating Regional Transboundary Cooperation In The Eastern Nile Basin Beyond The River Flow

Cooperation among countries sharing a water basin is often difficult due to historic rivalries, conflict legacies, and the increased utilization of water flow. In order to improve state cooperation, academics and policymakers tend to overemphasize the allocation rules of water resources confined to the river. However, a river basin cooperation is more than water sharing. […]

Study Implies Air Pollution Has Led To A Drop In Intelligence

A new study done by an international team of researchers and published in the journal Proceedings of the National Academy of Sciences implies that air pollution has lead to a reduction in intelligence in many regions of the world. Though the data was collected from China, the findings of the study could have implications far […]

How Tibetan Plateau Pika Use Behavior And Physiology To Respond To A Changing Environment

Published by Qu Jiapeng Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Region These findings are described in the article entitled Independence between coping style and stress reactivity in plateau pika, recently published in the journal Physiology & Behavior (Physiology & Behavior 197 (2018) […]