Protein Binding Supersites

Many cellular functions are mediated through interactions between protein molecules. Understanding specifics of these interactions, such as which part of a protein takes part in interactions and what proteins can interact with one other, can shed light on the molecular details of regulations and ultimately will provide a way to rationally modulate these interactions for biomedical intervention.

Identification of these binding interfaces has many important applications; it enables interfering with the protein activity, either to enhance or disrupt binding by designing suitable molecules. For instance, knowledge of the binding interface of proteins in the immune system has led to the development of several modern drugs including Nulojix, a recent immunosuppressive drug approved by the FDA to prevent transplant rejection.

The first step in this discovery process is to understand which part(s) of a protein can interact, i.e. to identify its binding interface. Proteins bind to small organic molecules as well as to other large protein molecules. While there has been much success in predicting the interaction sites between proteins and small molecules, the prediction accuracy of binding interfaces between two proteins is rather low. More than 150,000 protein structures have been solved experimentally to date, but only a small fraction of these proteins have a known complex structure, where binding interfaces can be directly identified. Even if a complex structure is known for a given protein it is likely to be only partially informative as proteins are assumed to have on average 3-10 interacting partners. It is, therefore, essential to develop computational methods that can bridge the knowledge gap and that can accurately predict the binding interfaces of proteins.

Computational methods developed thus far to predict binding interfaces can be classified under two broad categories – (1) methods that make use of prior knowledge of known interfaces between proteins referred to as homology-based1,2; and (2) ab initio methods3,4 that are based on identifying various interface specific characteristics of residue conservation, solvent accessibility, planarity, etc. Ab initio methods have the advantage that these can be used for any proteins without restriction, while homology-based approaches are more accurate but are limited to a subset of proteins for which a sequentially similar structure is known that has been experimentally solved in a complex form.

We introduced a docking-based, ab initio method5 that successfully predicts the binding interfaces of proteins that does not require prior knowledge of the protein’s binding partner. This result is similar to what has been previously observed for the binding of small molecules to proteins. In the case of small molecule binding, it was observed that there are certain “sticky sites” on the protein to which many small molecules bind, regardless of their nature.6,7 We have observed similar “Super Sites” on protein molecules that can be identified by docking a target to many different, biologically unrelated protein partners.

The binding sites are identified on a protein by docking the protein to many partner proteins of different sizes. We generate multiple docked poses for each partner. We then identify the amino acid residues on the protein that are within a short distance (usually 4 angstroms or less) of an atom in the partner protein. The frequency with which the amino acid residues are sampled at the interface in these docking experiments is analyzed. The most frequently sampled residues are considered to be the interface residues. Sufficient accuracy is achieved with about 200 docked poses and with three or more protein partners to account for the variability of possible interacting partners. Our method is of comparable accuracy to other methods that currently exist to identify the binding interface. The major advantage of this method is that the binding sites are identified without prior knowledge of the cognate partner.

Figure 1. (A) Protein (1cnz.A) shown as a cartoon; annotated interface residues are shown as red transparent spheres; predicted residues shown as green spheres. (B) Partner protein (2jjs.C) used in the docking. Image republished with permission from PLOS Computational Biology from

Our analysis revealed that the accuracy of the method is independent of the type of protein fold we are exploring and it appears to be a universal feature of protein. This is important because some protein folds are widely found in many biological processes, therefore, it is fair to assume that despite variability of functions, they preserved the mechanics of interactions to the same site. Our results show that docking to a generic partner is able to identify the likely binding site on a protein, which suggests that proteins have binding supersites, a favored site for interaction for both cognate and non-cognate ligands.

These findings are described in the article entitled Protein—protein binding supersites, recently published in the journal PLOS Computational Biology.


  1. Petrey D, Honig B. Structural bioinformatics of the interactome. Annual review of biophysics, 2014;43:193-210.
  2. Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, et al. Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature, 2012; 490 (7421):556-60.
  3. Northey T, Baresic A, Martin ACR. IntPred: a structure-based predictor of protein-protein interaction sites. Bioinformatics, 2017.
  4. Porollo A, Meller J. Prediction-based fingerprints of protein-protein interactions. Proteins. 2007;66(3):630-645.
  5. Viswanathan R, Fajardo E, Steinberg G, Haller M, Fiser A. Protein binding supersites, PLoS Comput Biol 15(1): e1006704.
  6. Ringe D. what makes a binding site a binding site? Curr Opin Struct Biol. 1995;5(6):825-9.
  7. Hajduk PJ, Huth JR, Fesik SW. Druggability indices for protein targets derived from NMR-based screening data. J.Med.Chem. 2005;48(7):2518-25.

About The Author

Raji Viswanathan

Dr. Raji Viswanathan is a professor of Chemistry. She joined Yeshiva College as an assistant professor of chemistry after postdoctoral fellowships at Rice University and Princeton University. She also served as the Associate Dean of Academic Affairs of Yeshiva College from 2009 - 2013.

Her current research interest lies in the areas of computational chemistry and biology. Her expertise is in the areas of molecular dynamics and electronic structure theory. She has studied the nature of hydrogen bonding in model polypeptides using quantum mechanical methods. She has also contributed to the understanding of the role of proteins in biomineralization. Her current project is to understand the nature of protein-protein interfaces at the atomic level, and to develop methodology to identify features of the protein molecule that leads to specificity in binding.

Speak Your Mind!


Is NH3 Polar Or Nonpolar?

Ammonia, chemical formula NH3, is a colorless gas frequently used in the production of fertilizer, as a cleaning chemical, and in the creation of nitrogenous compounds. You might be wondering, is ammonia a polar molecule or nonpolar molecule? The answer is that ammonia is a polar molecule, with its polarity being influenced by its asymmetrical […]

Improving On Solar Collectors

Energy consumption has been multiplying at one of the fastest rates in the world due to population growth and economic development. Thus, the role of energy becomes considerably important to sustain modern societies’ fast economic and industrial growth worldwide. The brisk exhaustion of fossil fuel reserves has compelled an urgent need for alternative sources of […]

What Is A Response Variable?

Science is in the business of finding cause-effect relationships between things in the natural world—discovering how changes in one quantity cause changes in another. The quantities that scientists record and manipulate are called variables. Scientists elucidate the causal structure of the world by manipulating variables to see how changes in one variable affect changes in other variables. […]

Occipital Lobe: Function And Definition

The occipital lobes a found at the back of the brain, and they are one of the four main regions of the brain’s cerebral cortex. The occipital lobes play a critical function in the reception and interpretation of sensory stimuli coming from the eyes. In other words, they are the main regions where visual stimuli […]

Computational Time-Reversal Imaging Method For Ultrasonic Nondestructive Evaluation

To reliably access the integrity of a material or the structures made of it, we need to know the geometry and size of flaws buried potentially inside the material. When ultrasonic waves are used for a nondestructive evaluation (NDE) of materials, therefore, an important goal is to reconstruct the shape of flaws from a set […]

A New Approach For High-Performance K-Ion Batteries

The International Energy Outlook 2016 (IEO 2016) published by the U.S. Energy Information Administration shows that the world’s energy consumption will grow by 48% between 2012 and 2040. And, with the increase of global warming caused by the high consumption of fossil fuels, the use of renewable and environmentally-friendly sources of energy has become crucial. […]

Dodo Bird Meets Goldilocks: Psychotherapy And The Placebo Effect

In Alice in Wonderland (Chapter III, “A Caucus-Race and a Long Tale”), Alice viewed a race among all animals initiated by the Dodo bird. “… [A]s they began running when they liked, and left off when they liked, so that it was not easy to know when the race was over. However, when they had […]