Potential Transfer Of Antimicrobial Resistance Genes From Antibiotic-resistant Bacteria From Aquaculture Settings To Terrestrial Species

Farmed fish and shellfish accounted for more than 50% of the worldwide human consumption of these products in 2014. They are expected to provide two-thirds of global consumption by 2030, if not sooner. Hundreds of tons of antimicrobials and antibiotics are used each year to prevent and treat bacterial infections in these farmed animals, a usage that select for antimicrobial-resistant microorganisms in the aquatic environment and its animals.

Dr. Tomova and her colleagues previously found that bacteria isolated from patients with urinary tract infections in a Chilean coastal region adjacent to an area of intensive fish farming with heavy marine quinolone usage contained significantly more genes for quinolone-resistance than did isolates from comparable patients in New York. Even more important, the quinolone resistance genes in these Chilean marine bacteria were also DNA sequence identical to those present in patients with quinolone-resistant urinary tract infections in this same coastal region.

In order to begin to analyze potential networks of horizontal gene transfer between marine and terrestrial bacteria, these workers have now studied the genomic location of quinolone-resistance genes and Class 1 integrons in a group of randomly chosen, quinolone-resistant marine bacteria and clinical isolates from the previously studied adjacent Chilean coast. (Integrons are a genetic mechanism for bacterial acquisition and differential expression of new antimicrobial resistance genes).

In four quinolone-resistant marine bacterial isolates from this aquacultural area, quinolone-resistance genes qnrA, qnrB, and qnrS were chromosomally located. While qnrA was chromosomally located in two quinolone-resistant clinical isolates of Escherichia coli from patients with urinary tract infections in the adjacent coastal region, qnrB and qnrS in two other isolates were located in small molecular weight plasmids, a location that renders them more easily transferable to other bacteria.

In two isolates with chromosomally-located qnrS genes (a Marinobacter sp. marine isolate and an E. coli clinical isolate), sequences immediately upstream of the qnrS gene were homologous to comparable sequences of numerous reported plasmid-located qnrS genes, while downstream sequences were different. Interestingly, in both marine bacteria and uropathogenic E. coli, class 1 integrons had similar co-linear structures, identical gene cassettes, and similarities in their flanking regions.

The observed commonality of quinolone resistance genes and integrons between these limited numbers of marine and clinical isolates suggests that heavy aquacultural use of antimicrobials might facilitate horizontal gene transfer between bacteria in marine and terrestrial locations.

It also suggests that identification of the genetic and molecular mechanisms involved in sharing of antimicrobial resistance genes between environmental bacteria and animal and human pathogens will constitute an important area of future research because of the potential negative impacts of such processes on animal and human health.

These findings are described in the article entitled Plasmid-Mediated Quinolone Resistance (PMQR) Genes and Class 1 Integrons in Quinolone-Resistant Marine Bacteria and Clinical Isolates of Escherichia coli from an Aquacultural Area, published in the journal Microbial Ecology. This work was led by Aleksandra Tomova, Larisa Ivanova, Alejandro Buschmann, Henry Godfrey, & Felipe Cabello from New York Medical CollegeComenius University in Bratislava, and Universidad de Los Lagos.

Additional information about this study can be found here: Tomova, A., Ivanova, L., Buschmann, A.H. et al. Microb Ecol (2018) 75: 104. https://link.springer.com/article/10.1007%2Fs00248-017-1016-9

About The Author

Emily Spear

Emily graduated from Truman State University in 2016 with a bachelor’s of science degree. As the editor and social media contributor for Science Trends, she works to ensure scientific writing is top notch. She has a diverse background in writing and editing pieces covering a variety of topics including news, science, sports, and travel.

Emily lives in Washington, D.C. and enjoys puns, binge-watching television series on Netflix, and traveling with her husband and daughter.

Comment (1)

  1. One complicating factor is the local human usage of the same drugs. In aquaculture, even in the US where I was in aquaculture, the lower costs antibiotics we purchased for our aquatic animals were often diverted to human usage. This common usage would genetically speed the transfer between species while the humans were selecting for any gene transfer.

    We knew that the big price difference between human and animal drugs was not a difference is chemistry or activity but in packaging, marketing and bureaucratic costs (prescriptions, etc.).

Speak Your Mind!

READ THIS NEXT

How Does The Latitudinal Dependency Of The Cloud Structure Change Venus’ Atmosphere’s Temperature And Circulation?

Clouds are not located at the same altitude everywhere in Venus’ atmosphere. They are 10km lower at the poles than at the equator. This altitude difference seems to be one of the main responsible factors in the formation of the so-called “cold collar”; a permanent current of cold air encircling a highly variable warm atmospheric […]

Glycoalkaloids In Potatoes: The Effect Of Biostimulants And Herbicides

Solanum tuberosum L., also known as potatoes, are one of the most consumed vegetable crops in the world. Because of their nutritional value, potatoes’ quality and safety are very important. There is a potential danger for potato consumers due to some toxic compounds called glycoalkaloids (TGA – total glycoalkaloids), which accumulate in potatoes during growth, […]

Are Dolphins Mammals?

You may wonder are dolphins mammals and the answer is yes, dolphins are mammals. They are warm-blooded, child-bearing, produce milk, and require air to breathe just like humans. To understand the world, we classify everything around us to create hierarchies, structure, and sense. These classifications allow us to understand the relationship between species, groups, and […]

How To Make Green Fire

You can make green by mixing together equal parts of blue and yellow paint, making sure both colors are pure colors and not a variation. You can make green fire by mixing together borax or boric acid with methanol and lighting it on fire, creating a majestic green colored flame. If you’ve seen fireworks, you […]

Development Of A High-Performance Stretchable Energy Harvester

Triboelectricity, one of the most frequent experiences in our everyday life, is a contact-induced electrification in which two surfaces are electrically charged when they are contacted and separated. In combination of the triboelectric effect and electrostatic induction, triboelectric energy generator (TEG) has been investigated to convert small and irregular mechanical energy into electrical power. TEG […]

Urban Form And Environmental Performance Of Modern Cities

Facing the challenge of more sustainable urban environments, the density of the development is still a crucial and debated topic, for its controversial economic, social and environmental consequences. As a matter of fact, urban areas already host more than half of world population, having overcome this significant threshold since 2008 ( World Bank data ). […]

What Are The End Products Of Glycolysis?

The end products of glycolysis are: pyruvic acid (pyruvate), adenosine triphosphate (ATP), reduced nicotinamide adenine dinucleotide (NADH), protons (hydrogen ions (H2+)), and water (H2O). Glycolysis is the first step of cellular respiration, the process by which a cell converts nutrients into energy. The term glycolysis is formed from two Greek words, glykys meaning sweet and lysis, meaning […]