How Chemical Compounds Affect Fruit Bats’ Plant Interactions

Fruit bats are known to be able to discriminate, select, and track the essential oils of their preferred fruits. A few years ago, our research group hypothesized, experimented, and confirmed that these bats can be attracted with essential oils only – concentrated volatile aromas – of their preferred fruits both in forested and open areas. These findings led to the proposal of a restoration tool that uses essential oils of chiropterochoric fruits (fruits eaten by bats) to attract seed-dispersing bats to degraded areas with the objective to increase seed arrival and germination.

Nevertheless, the role played by different chemical compounds in attracting the bats was largely unknown. Now, our recent study, “Chemical compounds in Neotropical fruit bat-plant interactions,” unveils how fruit bats can find fruiting trees and ripe fruits in the dark within dense canopies. To do so, we have combined gas chromatographic (GC) analysis and attraction trials with captive bats to investigate the molecular basis of fruit foraging in two common neotropical species: Artibeus lituratus and Carollia perspicillata (Figure 1).

Figure 1. Bat species used in captivity tests (L. C. Parolin).

We began by impregnating a series of rubber septa (Figure 2) with the raw essential oil of Piper gaudichaudianum, a chiropterochoric fruit highly appreciated by these animals. The septa were kept on a laminar flow cabinet until GC analysis or attraction trials, both conducted on the same day, and then we tested and analyzed the septa every 5 days for up to 60 days. The tests indicated whether the septa (with the remaining components of the essential oil) were still attractive to the bats after the oil had aged. The CG analysis allowed us to identify which volatile oil compounds were lost and which ones remained on the rubber septum throughout the trial and, consequently, could be responsible for bat attraction.

Figure 2. Rubber septum that was impregnated with essential oils of fruit eaten by bats (L. C. Parolin).

The tests with captive bats revealed that the bats’ response toward the septum with essential oils decreased significantly beginning on the 25th day (Figure 3). The chemical analysis then suggested that eight oil compounds had a prominent role in bat-oil interaction – five monoterpenes: α-pinene, β-pinene, cymene, limonene, and dihydro carveol, and three sesquiterpenes: α-copaene, 9-epi-caryophyliene, and cis-eudesma-6, 11-diene (Figure 3B).

Figure 3. (A) PCA analysis of GC-MS profiles of the essential oil of Piper gaudichaudianum remaining in rubber septa – the first two principal components clearly separated attractive septa for Carollia perspicillata, (B) correlation loadings of the peak areas in terms of contribution to component 1 and 2 of Figure A, in which (1) α-pinene, (2) β-pinene, (3) cymene, (4) limonene, (5) dihydro carveol, (6) α-copaene, (7) 9-epi-caryophyliene and (8) cis-eudesma-6, 11-diene (Parolin et al., 2019). Republished with permission from Elsevier from

Out of these, α-copaene appears to have a key role in fruit-bat interactions, since its concentration decreased strongly until the turning point in bat response (Figure 4). Based on these results, additional trials (two for each compound and bat species) were conducted with two essential oil compounds: α-pinene and α-copaene against a blank septum (control).

Figure 4. The behavior of α-copaene, 9-epi-caryophyllene, and cis-eudesma-6-11-diene along the duration of the experiment (60 days) (Parolin et al., 2019). Republished with permission from Elsevier from

In the end, we were able to demonstrate that fruit bats can discriminate between two classes of essential oil compounds: monoterpenes and sesquiterpenes. Monoterpenes seem to provide an initial short-living signal, allowing bats to locate fruiting trees while moving through the dark forest. Sesquiterpenes, on the other hand, seem to provide longer-lived information on fruit ripeness, thus allowing bats to make optimal foraging choices.


Such findings give a unique perspective on the molecular mechanism of bat-plant communication and have important implications in forest restoration. Specifically, simple mixtures of commercially-available mono and sesquiterpenes (e.g. α-pinene and α-copaene) could be used as attractants to seed-dispersing bats into degraded landscapes improving the density and diversity of plants.

These findings are described in the article entitled Chemical compounds in Neotropical fruit bat-plant interactions, recently published in the journal Mammalian Biology.



The Function Of Microtubules: Plant And Animal Cells

Microtubules function as small, interconnected tubes of polymers that form part of the cytoskeleton in eukaryotic cells and some prokaryotic cells. […]

Implication Of Global Warming On Electricity Demand In Australia

The increase in temperatures as a result of global warming has serious implications for electricity demand. Global warming, which is […]

Study Calibrates Guarded Hot Plate Method Of Measuring Thermal Conductivity – Life Saving Impacts Possible

When a spacecraft runs in space, the surface temperature of the sunny side could reach hundreds of degrees. On top […]

Back To The Past For Management Of Large Carnivores In Alaska

In the 19th and early 20th centuries, North American bears, wolves, and mountain lions were viewed as threats to human welfare […]

Comparison Of Transcatheter Mitral Valve Repair Versus Surgical Mitral Valve Repair In Patients With Advanced Kidney Disease

The current study is the first to demonstrate that Transcatheter mitral valve repair using the MitraClip (developed by Abbott Vascular, […]

The Great Pacific Garbage Patch Is Twice The Size Of Texas And Predicted To Grow Much More

In the middle of the Pacific Ocean, there is a massive pile of trash, brought together by the swirling ocean […]

Designing A Flexible Heat Shield For Spacecraft That Utilizes Centrifugal Force

Spacecraft travel at high speeds and have to “brake” before landing onto a planet. When the planet has an atmosphere, […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?