ADVERTISEMENT

From Coal, A New Source Of Rare Earth Elements — But Also A New Identified Risk To The Population! 

Rare earth elements (REE) have become a highly valuable commodity due to their increased use in emerging technological applications. The future exploitation of areas with high REE content will play a strategic geopolitical role around the world, as shown in a previous article.

The progressing activity in opening new mining areas will contribute to increased REE mobility and will influence the fate of these elements in the environment over the next decades. In order to monitor the respective contribution of mining activity, it is crucial to establish a toxicity threshold in these areas.

ADVERTISEMENT

Moreover, the need for coal is decreasing, and the industry is under fire for polluting streams and rivers with coal ash and acid mine drainage (AMD) as shown in this previous article. Among all the metals potentially present in coal and released into the environment by AMD, REE are now being looked at more closely. If one can figure out how to extract them economically, REE sales could help pay for part of the cleanup costs associated with the coal mining industry.

However, coal mining depletes and contaminates water resources, leaving previously cultivable land unsuitable for agriculture. Coal mining activities thus reduce available ground- and stream-water and pollute these vital resources with AMD and released metals (including REE). Populations living near coal mines have to use mine pit water for culture irrigation.

In a recently published study, Martinez and co-workers tried (1) to quantify REE effect on rice plant growth and (2) to determine whether iron (III) oxide presence on plant root surface (i.e. iron oxide plaques) played a role in inhibiting toxic effects caused by REE occurrence. Rice plant growth was performed in a greenhouse under controlled hydroponic conditions. Plants were exposed to REE, and to iron (II) sulfate or iron (II) chloride (Figure 1).

Figure 1. Effects of REE on rice shoot and root biomass. Credit: Olivier Pourret

In the presence of the Fe(II) sulfate, a negative growth effect was observed, which was more noticeable at the highest REE concentrations.

ADVERTISEMENT

For the Fe(II) chloride experiments, speciation modeling calculated that REEs are present as hydrated ions (REE3+) or sorbed by Fe(III) oxyhydroxides. With Fe(II) chloride, the light rare earth elements (La, Ce, Pr, Nd; LREE) remained mostly soluble, whereas the middle (Sm, Eu, Gd; MREE) and heavy (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; HREE) rare earth elements were mostly bound by Fe(III) oxide surfaces. As negative growth effects were observed with Fe(II) chloride, the most soluble LREE could be settled to play a role in the inhibition of rice plant growth.

Furthermore, upon addition of Fe(II) sulfate, the MREE and HREE were significantly complexed by sulfate. It results in a regained toxic effect for rice plants, especially at highest REE concentration. It also put forward the effect of dissolved MREE- and HREE- sulfate complexes on plant growth. This observation, coupled with the knowledge that sulfate is an essential nutrient for plants, suggests an absorption of these species by rice plants.

This study results strongly evidence that REEs are harmful to rice development. These negative growth effects may have been attenuated as a consequence of REE sorption onto iron oxide plaques observed on the root surface. This hypothesis was further suggested by surface complexation modeling of REE to iron (III) oxides.

These findings are described in the article entitled Effect of rare earth elements on rice plant growth, recently published in the journal, Chemical Geology. This work was conducted by Raul E. Martinez and Charlotte Dian from Albert-Ludwigs University and Olivier Pourret and Michel-Pierre Faucon from UniLaSalle

ADVERTISEMENT

Comments

READ THIS NEXT

Life Cycle Of A Butterfly: Stages Of Life

The life cycle of a butterfly includes a process called metamorphosis where each butterfly goes through 4 stages from an […]

Determining The Physical Parameters Of Rigid Porous Materials Using Ultrasonic Reflected Waves

A porous material is a medium containing pores filled with a fluid (liquid or gas). The skeletal part is usually […]

Can Genetic Information Help Prevent Hamstring Injury?

As a former Olympic sprinter, I suffered from my fair share of hamstring injuries across my career. And I’m not […]

Presenting A Realistic, Stochastic, And Local Model Of Quantum Mechanics

Quantum mechanics is certainly one the most puzzling branches of physics. While a mathematical formalism that describes quantum mechanics is […]

The Science Of The Stressor: The Good, The Bad, And Psychology!

Since the 1960s, thousands of researches have been conducted in different sectors (immunology, oncology, neuropsychology, etc.) on the multiple factors […]

Developing A Low-cost Diagnostic For HIV Drug Resistance Mutations

Although there is still no cure for HIV, HIV-positive patients can live a near normal life expectancy with modern therapeutic […]

Scientific Interest Of Killifish Living In Tropical Countries 

Killifish have a broad range of geographical distribution, though the principal location of their natural habitats are the fresh waters of […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?