ADVERTISEMENT

Digitizing Diagnoses With Histopathological Slides

Published by Daniel Lichtblau

Wolfram Research, Champaign, Illinois, United States of America

These findings are described in the article entitled Cancer diagnosis through a tandem of classifiers for digitized histopathological slides, recently published in the journal PLoS One (2019). This work was conducted by Daniel Lichtblau from Wolfram Research and Catalin Stoean from the University of Craiova.

Tissue slides are frequently used to make medical diagnoses. One example involves H&E stained slides for assessing presence and grade/severity of cancer. Once the slides are available, they are typically evaluated by trained pathologists.

ADVERTISEMENT

While this usually leads to appropriate diagnoses, there are several potential issues. One is that different pathologists might (and sometimes do) grade the same slide differently. Another is that the same pathologist might, on different occasions, grade the same slide differently (lighting, fatigue, etc. all play a role here). Yet another is that as diagnostic technology becomes less expensive and more widely used, there may be locales for which samples can be prepared but there are not sufficiently many trained pathologists to process them. For all these reasons, automated diagnosis software is viewed as a way to ameliorate the workload and also to get second (or third) opinions, in a way that is unbiased (or, more correctly, tends to have different biases from those of human pathologists).

Prior literature has made good use of image processing and machine learning (ML) methods for the purpose of automating diagnoses. A typical algorithm workflow involves the following steps:

  1. Image segmentation and related methods for obtaining various “measures” in given images.
  2. Feeding many such measures into ML classifiers, with a view toward determining which features are “important” as predictors of the actual diagnosis.
  3. Further training of classifiers using the determined features.

Such methods tend to require considerable time, computational resources, and a good idea in advance of what set of image features might be useful.

Our approach is more direct. We let the ML classifiers determine relevant features, and only provide training data in the form of slides and corresponding diagnoses (as determined by more than one pathologist, under careful conditions). In addition, we employ an unrelated method that grades an image by its proximity to “nearby” images of known grade (based on prior published work involving tandem usage of Fourier and Principal Components methods, by the first author).

ADVERTISEMENT

The benefit is that this method tends to correlate more loosely with ML classifiers than they correlate with one another — loosely speaking, it makes its mistakes in different places, and thus serves to offset incorrect grading from the standard ML approaches. Further along these lines, we then use a validation method to create an ensemble weighting using the multiple classifiers. We also provide a confidence measure. That is to say, using thresholds for the overall probabilities we can assess the reliability of a given diagnosis. For the main data set in this study, it shows that roughly 70% of the diagnoses are quite trustworthy (and correct), with the
most if not all errors occurring in the rest.

The main novelty in this work is the methodology for creating an ensemble score. Our approach is shown to be competitive with more strenuous processing methods by assessing three benchmark data sets. A second aspect, of independent interest, is that the benchmark tests cover two different cancer types (colorectal and breast), thus giving some confidence that the methodology might be extensible.

There are some future directions under consideration. We first note that H&E tissue images can pose certain difficulties for machine learning methods. One is that results should be independent of slide orientation. Another is that different levels of coloration might be due to different lab set-ups or lighting differences in creating electronic images from actual slides. A third is that tissue inhomogeneities sometimes arise from boundaries with unrelated tissue rather than benign/malignancy borders. Possible future experiments involve color deconvolution (to offset the effect of inter-lab differences), and use of images averaged over rotations to minimize the impact of both orientation and tissue inhomogeneities. Also, we might extend to a different cancer type, such as leukemia, for which there exists a large benchmark set of stained slide images.

Comments

READ THIS NEXT

Is The Northern White Rhino About To Become Extinct: Can The Species Be Saved?

The recent news of the death of the last northern white rhino has caused a global outcry. Known as Sudan, […]

3D Printing Of Mutlifunctional Devices Is One Step Closer To Reality

The vision to 3D-print fully functional devices that contain multiple materials in a press of a button has come a […]

Gaps In Perception: How We See A Stable World Through Moving Eyes

We see the most detail in the center of our visual field. This region is called the fovea: it is […]

How To Write A Cursive Capital “S”

Want to learn how to write a capital cursive S? Read on to find out and find out some interesting […]

Preliminary Observation Of GNSS Data From Turkey Used To Estimate Ionospheric Total Electron Content

The ionosphere is an important atmospheric layer, lies between 100 to 1000 km above the Earth, is the greatest source of error […]

Rh(III)-catalyzed Distal Alkylation Of Quinoline: Application In Total Synthesis

One of the common goals of all organic chemists is to utilize easily available feedstock for the synthesis of valuable […]

Recent Stressful Events Linked With Smoking During Pregnancy

Stress and cigarette smoking seem to go hand-in-hand with each other as many people, especially women, report smoking to relieve […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?