ADVERTISEMENT

Detection On The Go For A Common Viral Pathogen

Human noroviruses are a leading cause of gastroenteritis globally and inflict a considerable public health burden. The viruses are easily transmitted, sometimes through foods, but also person-to-person. The virus causes intense vomiting and diarrhea, which can result in horrible outcomes in certain populations – especially the elderly and children. One of the many challenges in controlling this threat is the ability to rapidly detect the virus in people or the environment so that measures can be taken to stop the spread of the virus.

The traditional technique used for this is not readily deployable in many settings where the virus may be found, like restaurants, nursing homes, and food preparation centers. This traditional technique relies upon amplification of a segment of the virus genome, which makes it capable of detecting a very small amount of virus. However, the technique requires a large, expensive piece of equipment, electricity, a freezer for the chemicals used in the reaction, and takes at least one hour to complete. While the virus is so easily transmitted, it takes a significant amount of time to send samples to a lab and then tested for a result. Thus, having a rapid, portable method capable of detecting the virus is crucial to stopping its spread.

ADVERTISEMENT

Researchers atĀ North Carolina State UniversityĀ and theĀ University of MassachusettsĀ have developed a Norovirus assay using a technique called Recombinase Polymerase Amplification (RPA), that shows promise for achieving this. RPA amplifies the virus genome using enzymes that operate at body temperature without the need for altering the temperature like the traditional technique. Because the method requires maintenance of a general, low, constant temperature, it requires considerably less electricity – meaning that portable solar-powered batteries could be used for it.

In one report, this technique has been applied to another pathogen using a researcherā€™s body heat to power the reaction. In addition to being portable, the method takes 20 minutes or less to amplify the viral genome – much less than the hour or greater demand of the traditional method. Another advantage of this method was its ability to tolerate other chemicals present in samples that inhibit the traditional method. Because it was so tolerant, the researchers were capable of detecting norovirus in patientsā€™ stool by directly boiling the stool without additional preparatory steps. This saves a large amount of time and additional equipment needed for the sample preparation traditionally used.

Overall, this new method would enable portable detection of norovirus from a patient sample in under 30 minutes total. Because the method is amplification-based, it is better able to detect a small number of viruses in a sample. This ability is crucial for detecting noroviruses in food and environmental samples, as the number of viruses found in the samples is often low.

Future work will involve increasing the ability of the assay to detect additional strains of norovirus. Additional evaluation of the performance of this method when used for food and environmental samples is also being performed. Further optimization of this method and its applicability to other samples is currently underway, and it has the potential to yield powerful results in the fight against this ubiquitous pathogen.

ADVERTISEMENT

These findings are described in the article entitled Development of a Recombinase Polymerase Amplification Assay for Detection of Epidemic Human Noroviruses, recently published in the journal Scientific Reports. This work was conducted by Matthew Moore and Lee-Ann Jaykus from North Carolina State University and the University of Massachusetts.

Comments

READ THIS NEXT

Climate Change Mitigation Policies Could Facilitate Universal Electricity Access In Sub-Saharan Africa

Energy is fundamental to development. SDG7 acknowledges that ensuring access to affordable, reliable, sustainable, and modern energy for all is […]

Biological Weathering: Examples And Definition

Biological weathering is the process in which plants, animals, and bacteria break down rocks into smaller pieces. This weathering can […]

Sickle Cells Direct Cytotoxics And Oncolytic Virus To Hypoxic Tumor Niches And Induce A Tumoricidal Response

Sickle erythrocytes are a unique mammalian erythroid lineage that under hypoxic conditions alter their shape becoming rigid and adherent to […]

Light Activated “Quantum Dots” Make Anti-Biotic Resistant Bacteria Vulnerable Once More

One of the biggest emerging threats in the world today is the proliferation of drug-resistant superbugs. In the attempts to […]

Microdoses Of Psychedelic Mushrooms Could Help Stimulate Creative Thought

Microdosingā€”taking fractional doses of psychoactive compoundsā€”has gained popularity recently as a way to lessen anxiety and stimulate creative thought. Some […]

The Price Of Loneliness Is Sleep, Not Only In Twins

Scientists have found a connection between loneliness and sleep disorders in adolescents. One group, in particular, was at risk.Ā  Humans […]

How Many Watts Are In An Amp?

Electricity is an integral part of our society, but the units used to measure electricity can be confusing. Perhaps, youā€™ve […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?