How We Describe Complex Systems To Solve Global Dilemmas

Society faces many challenges from individual health to global financial crises, food shortages, disease outbreaks, and ethnic violence. These issues are highly complex. The reason why we have so much trouble addressing them is actually rooted in a basic mathematical problem: How can we identify the important information—the information that determines effective interventions—in a large amount of data?

We have more data about our society than ever before, but the path from big data to actionable solutions is not straightforward. “From big data to important information,” a paper summarizing research at the New England Complex Systems Institute, provides a framework that shows what the problem is and how to make real progress in solving these challenges.


What is the scientific trajectory for taking a sick person or a struggling country’s economy to a state of health or stability? It would seem that the right approach is straightforward, if difficult. Study the available data and build a model. Simulate the model, predict the effects of interventions—voila, the problem is solved. This approach seems reasonable, but there is a hidden flaw. It only works if we correctly identify the right properties to study.

What if we simply keep collecting more and more detail about a system? Wouldn’t the model be right? The problem is that the data is never ending; we can’t get all of the microscopic information about a system, even for a small system.

NECSI’s solution to this challenge comes from a new mathematical approach to describing systems developed originally in physics, specifically the “renormalization group” study of phase transitions. Consider the boiling point of water. The transition causes a discontinuous change in density. If we increase the pressure, the boiling temperature also increases. The discontinuity in the density decreases until it disappears. At that point, called a second order phase transition point, the system has a behavior that cannot be described by the density change itself. Instead, there are fluctuations of density across the material. To treat these mathematically, Ken Wilson developed renormalization group to treat the behavior as a function of scale.

NECSI’s paper extends these concepts to a generalized multiscale information theory. In this approach, the data or information itself is given a specific scale. Different properties of a complex system affect its behavior at different scales. When we wish to change the behavior of a real-world system, we usually want to affect the largest scale. It follows that the properties most important to our models would be those that can be seen on the largest scale.


This approach is a massive simplification. Rather than studying all the data and all the chains of cause and effect that influence the behavior of a system from the molecular scale up, we can focus only on the specific information that matters. Still, this approach requires its own mathematical treatment that can be challenging to implement in practice. Yet when the effort is made, multiscale information theory can provide detailed guidance about which interventions can lead to the changes we want to make in human health or society.

NECSI has successfully applied these methods to a number of real-world problems. An analysis demonstrated that the Arab Spring was precipitated by rising food prices. Those prices were in turn driven up by corn being converted to ethanol and agricultural market speculation in the United States. Another analysis found the biggest predictor of violence in many countries is the geographic distribution of ethnic groups.

We correctly predicted there would be a dramatically larger outbreak of Ebola before the West African outbreak. Then we correctly predicted that door-to-door health screenings would rapidly stop the virus from spreading. In all these cases, our approach untangled the complex web of cause and effect to find the most important properties and levers for solving some of society’s biggest challenges.

The study, From Big Data To Important Information was recently published by Yaneer Bar-Yam in the journal Complexity.




Exploring Leaf and Litter Traits in Decomposition

Leaf-litter decomposition is a vital process in forest environments: this is how nutrients stored in leaves are recycled, returning to […]

$180bn Invested In Plastic Production Risks Irreversibly Damaging The Environment

The world uses a massive amount of plastic, which threatens the integrity of the world’s oceans and food chains. The […]

Anatomical Body Planes

What are the anatomical planes of the body? The anatomical planes of the body are directional terms used by anatomists […]

“Schrödinger’s Immigrant,” Or Why Immigrants Can Be Both Hardworking And Lazy At The Same Time

We all have heard the argument that immigrants take jobs away from people born in the country. But we also […]

An Old Problem And The Lives Of Hemophiliacs With Recurrent Hemorrhages

The Problem Finding the ways in which changes in the genetic material (genotype) affects the structure and function of a […]

From Micro To Macro: Physicochemical Surface Properties Of Biogenic Silica Structures And Their Role In Silicon Cycling

Silicon (Si) is the seventh most abundant element in the universe, and thus it can be found almost everywhere on […]

Iconic Viking Warrior Found To Be A Woman According To DNA Test

Vikings – a generation known as the Norse Seafarers who were better recognized of their war skills and were highly […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?